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Abstract. The formation of cavities in stressed elastic plates causes changes in their energy. In particular, the change in energy 
due to the presence of a crack has been extensively studied over the past decades. The paper adds some comments on the old 
Griffith controversy and calculates then energy changes due to circular and elliptical flaws and, as a limiting case, due to a crack. 
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1. INTRODUCTION 

 
Originally, the motivation of the present author to study energy changes due to the formation of a circular 
hole in an elastic plate arose from a biological problem. It has been observed that crystals may form holes 
as they appear in biological systems such as the skeletal structure in echinoderms, e.g., sea urchins [1]. 
When the results [2] were presented at the EUROMECH Colloquium 478 on “Non-equilibrium Dynamical 
Phenomena in Inhomogeneous Solids” in Tallinn, 2006, a discussion ignited on a rather old problem. 
Briefly, using the stress analysis of Inglis [3] for an elliptical hole in an infinite plate under all-around 
tension 0 ,σ  Griffith [4] calculated in 1920 the change in the strain energy U∆  in a cracked plate with 
crack length 2a  as 
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with shear modulus ,G  3 4κ ν= −  for plane strain, (3 ) /(1 )κ ν ν= − +  for plane stress and Poisson’s  
ratio .ν  

In 1924, Griffith [5] revised this formula as 
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without giving any details of the calculation. It may be interesting to note that G. I. Taylor, who 
communicated Griffith’s first paper [4], already knew that Eq. (1) required correction. Nevertheless, he 
recommended publication since “the correction affects the numerical value …, but not their order of 
magnitude. The main argument is therefore not impaired …” ([4], p. 198, Note). 

From these two pioneering papers a long discussion started, focussing not only on the question whether 
formula (1) or (2) is correct but also, more interestingly, how Griffith may have obtained the modification. 
A detailed historical review of various arguments on this controversy may be found in [6], especially in the 
article of Cotterell [7]. 

 

 
 

MECHANICS
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Sih and Liebowitz [8] found out that the resemblance of the expressions for the excess of strain energy 
due to a crack and a circular hole was remarkable. In order to explain the trap that Griffith fell into in his 
1920 paper, they examined two problems. Firstly, they calculated the strain-energy density in an infinite 
plate with a circular hole of radius 0 ,r  subjected to biaxial tensions Iσ  and IIσ  at infinity using 
Clapeyron’s theorem (cf., e.g., [9]), subtracted from the result the strain-energy density of a plate without a 
hole under the same load, and arrived for uniform tension 0σ  at 
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Secondly, they treated the concentric-annulus problem under prescribed biaxial tractions at the outer 
boundary r R=  and calculated the strain energy, again with the use of Clapeyron’s theorem. Then they 
subtracted the strain-energy density of a circular plate with the radius .R  Passing in turn to the limit 

,R → ∞  they found for uniform tension 
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Equations (1) and (3), and (2) and (4) differ merely by a factor 2. The difference between (1) and (2), and (3) 
and (4) seem to result from the sequence of taking the limit R → ∞  first and calculating the energy change 
in a second step or vice versa. However, the discrepancy arises from the fact that Sih and Liebowitz [8] 
applied Clapeyron’s theorem [9] to a finite body (outer radius ),R  and then R  tended to infinity. Using this 
procedure they missed finite energy which is located exactly at infinity (L. Truskinowski, pers. comm. 
2007). It is shown in [2] that Clapeyron’s theorem is not applicable when the difference of energies involves 
different domains, i.e., infinite plates with and without a hole 0r r≤ ≤ ∞  and 0 ,r≤ ≤ ∞  respectively, are 
considered. 

Several authors ([7,10]) have developed different but somehow related strategies to overcome the problem 
by correcting the stresses and displacements at infinity. In this contribution, we give a further variant that 
Griffith may have used and provide an elegant alternative to calculating energy changes due to cavities and 
cracks. 

 
 

2. A  CIRCULAR  HOLE  IN  AN  INFINITE  PLATE 
 

Let us consider an infinite elastic plate with a hole of radius 0r  under biaxial tensions Iσ  and IIσ  (Kirsch 
problem). In polar coordinates ( , ),r ϕ  with the origin at the centre of the hole (Fig. 1), the  
 

 
 

 
 

Fig. 1. Plate with a hole subjected to biaxial tension. 
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distribution of stresses and displacements (cf., e.g., [11]) are given for 0r r≥  as 
 

2 2 4
( ) 0 0 0

I II I II2 2 4

1 1
( ) 1 ( ) 1 4 3 cos2 ,

2 2
K

rr

r r r

r r r
σ σ σ σ σ ϕ

   
= + − + − − +   

   
                           (5a) 

 

2 4
( ) 0 0

I II I II2 4

1 1
( ) 1 ( ) 1 3 cos2 ,

2 2
K r r

r r
ϕϕσ σ σ σ σ ϕ

   
= + + − − +   

   
                                  (5b) 

 

2 4
( ) 0 0

I II 2 4

1
( ) 1 2 3 sin 2 ;

2
K

r

r r

r r
ϕσ σ σ ϕ

 
= − − + − 

 
                                           (5c) 

 

2 2 4
( ) 0 0 0

I II I II2 2 4
( ) 1 2 2( ) 1 ( 1) cos 2 ,

8
K

r

r r rr
u

G r r r
σ σ κ σ σ κ ϕ

    
= + + − + + − + + −    

     
                (6a) 

 

2 4
( ) 0 0

I II 2 4
2( ) 1 ( 1) sin 2 .

8
K r rr

u
G r r

ϕ σ σ κ ϕ
 

= − − + − + 
 

                                    (6b) 

 

In the absence of the hole 0( 0),r =  the undisturbed biaxial stress and displacement fields are for 0r ≥  
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The (complementary) strain-energy density is given by 
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and we obtain *(0)W  by replacing ijσ  by (0)
ijσ  and *( )kW  by replacing ijσ  by ( )K

ijσ  ( , , ).i j r ϕ=  The 
strain-energy density W  written in terms of the strain tensor and the complementary strain-energy density 

*W  written in terms of the stress tensor are numerically identical within the framework of the linear 
theory of elasticity and can be easily transferred into each other by Hooke’s law without applying a 
Legendre transformation [9]. Therefore, in the following we will not distinguish between W  and *.W  

For later use we introduce the difference between (6a), (6b) and (8a), (8b) as 
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and the hoop stress along the rim of the hole 0r r=  (Eq. 5b) as 
 

( )
I II I II2( )cos2 .KR

ϕϕσ σ σ σ σ ϕ= + − −                                                (11) 
 

As has already been pointed out by Eshelby [12–14], the change in the total energy ,∆Π  i.e., the sum of 
the change in the strain energy U∆  and the change in the potential energy of the loading P∆  governs the 
process, and the change in the total energy ∆Π  is always negative when holes or cracks are formed 
independently on whether the loading mechanism is fixed-load, fixed-grip or in between. (“It is therefore 
wrong to say, as it is often done, that introducing a crack into a body or lengthening an existing one 
decreases the elastic energy (here the strain energy), though, …this can hardly lead to anything worse than 
an error in sign, which is usually silently corrected by common sense” [14], p. 142.) 

In calculating the change in the total energy ∆Π  when a circular hole is formed under load we consider 
first a perfect plate, and apply the stresses Iσ  and IIσ  at infinity. During the whole process, Iσ  and IIσ  
will not be changed (fixed-load condition). Now we cut out the hole and calculate the change in the strain 
energy U∆  (cf. [2,8]): 
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It may be noted that the calculation is straightforward but rather cumbersome. 
For a rotational symmetric stress state I II 0 ,σ σ σ= =  relation (3) is recovered as expected. Due to the 

removal of material, the plate is weakened and the load application point (even though at infinity) moves 
by an amount ( , ).iu i r ϕ∆ =  With (10a), (10b) the potential of the external forces P  thus changes to 
(cf. [2]) 
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On adding (12) and (13) we arrive at the correct result for the change in the total energy :∆Π  
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and recover Eq. (4) for I II 0σ σ σ= =  (with the “silently corrected” sign). 
It might be that Griffith thought along these lines when he corrected his result in the paper published in 

1924. 
 
 

3. PATH-INDEPENDENT  INTEGRALS  AND  ENERGY  CHANGES 
 

The first correct published derivation of Eq. (2) is probably due to Sneddon [15]. He considered first a plate 
without a crack and calculated constant tractions along a line where the crack would happen to occur. Next 
he evaluated the work of these tractions as they would relax during the formation of an elliptical crack 
opening. This method was also applied in [2] for the formation of a circular hole leading to a correct result 
(14). It turned out that the algebra is less involved in comparison with Griffith’s method, and instead of 
knowing the complete state of stresses and displacements in the plate with a hole, merely the 
displacements along the rim of the hole ( )

0( , )K
iu r ϕ  must be given. 

An even more elegant derivation uses the energy-release rate for a self-similar expansion of a defect 
calculated from the path-independent M  integral [16–18]: 

 

M = n ,( ) d ,x W u n sα βα βγ γ α βδ σ−                                                   (15) 
Γ                                           
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with an arbitrary integration path Γ  (arc length d ,s  unit outward normal vector )nβ  surrounding the 
defect, Kronecker’s tensor of unity ,αβδ  and displacement gradient , .uγ α  The summation convention 
( , , 1, 2)α β γ =  is implied for repeated indices. Due to the self-similar expansion of the hole 0 0 ,r rα→  the 
energy of the system changes and the energy release rate is calculated as 
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It follows that the change in energy due to the growth of the hole radius from zero to 0r  is 
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If the integration path Γ  coincides with the contour of a traction-free circular hole, Eq. (15) is simplified 
to 
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Before starting the analysis it can be mentioned that Bilby and Eshelby [14] used a different approach 
by employing path-independent integrals based on Betti’s reciprocity theorem. 

By replacing in Eq. (18) ϕϕσ  by ( )KR
ϕϕσ  (Eq. (11)), it is rather easy to calculate the M  integral for the 

Kirsch problem 
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and by evaluating (17) it follows immediately that 
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which is identical to Eq. (14). Only the knowledge of the hoop stress along the rim of the hole is required 
to calculate the “energy of the hole”. 

Similarly we treat the elliptical hole problem. The solution involves either a formulation in elliptical 
coordinates [3,19] and/or complex potentials combined with the conformal mapping technique [20]. The 
formulae of the complete solution are rather intricate and unwieldy, the expression of the stress distribu-
tion along the rim of the cavity, however, is rather handy and may be found in textbooks on elasticity or 
fracture (e.g., [21,22]). 

Consider an infinite elastic sheet with an elliptical cavity with semi-axes a  and b  subjected to a state 
of biaxial stresses Iσ  and IIσ  at infinity as depicted in Fig. 2. With 
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the boundary stress ϑϑσ  as function of the angle ϕ  is [22] 
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Fig. 2. A plate with an elliptical hole subjected to biaxial tension. 
 

 
and in order to evaluate M  from Eq. (18), we have with (21b) 
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with the abbreviations  
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The integrals occurring in (23) are tabulated (e.g., [23]), and the result of the integration is 
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To arrive at the change in the total energy, in Eq. (17) the integration has to be performed from 0  to ,a  
whilst the ratio ,a b  i.e. ,c  has to be kept constant (self-similar expansion): 
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Together with (25) this leads to 
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and on replacing c  by (21a) we arrive at 
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The result coincides with that given in [8]. As a special case we recover the “energy of the circular hole” 
(14) by setting 0 ,a b r= =  and as a special case for the crack we find with 0b =  the correct result for the 
“energy of the crack”: 
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i.e., ∆Π  is not affected by the applied stress in line with the crack edges. 
If the ellipsoidal cavity is subjected to simple shear τ  at infinity, we receive the energy change from 

(28) by setting Iσ τ= +  and IIσ τ= −  with the result 
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which leads with 0b =  to the correct expression for the “energy of the crack” subjected to far-field simple 
shear. 

 
 

4. CONCLUSIONS 
 

From the various possibilities of calculating the change in energy due to the formation of cavities in an 
infinite plate, the employment of the path-independent M  integral seems to be the most elegant one. After 
contributing some remarks to the old Griffith controversy, the energy of a circular hole can be calculated 
with a remarkably low expenditure of algebra. Even for the elliptical cavity the algebra is rather tractable. 
If the M  integral would have been at hand in 1920, the Griffith controversy would probably never had 
come into existence. 
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Elastsete  plaatide  potentsiaalenergia  muutumine  aukude   
ja  pragude  toimel 

 
Reinhold Kienzler 

 
Õõnsuste teke pingestatud elastsetes plaatides põhjustab nendes potentsiaalenergia muutusi. Eriti ulatus-
likult on potentsiaalenergia muutumist viimastel kümnenditel uuritud pragude olemasolu korral. Artiklis 
on toodud esiteks mõned selgitused tuntud Griffithi vastuolu kohta ja siis arvutatud potentsiaalenergia 
muutused ringikujulise ning elliptilise voo ja piirväärtusena ka prao korral. 

 


