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Abstract. This paper reviews Olof Thorin’s contributions to mathematical analysis, actuarial mathematics, and probability theory,
though in reversed order. In probability theory he is known for his path-breaking work on infinite divisibility. In actuarial
mathematics he contributed significantly to the ruin problem. However, his international fame very much relies on his work in
mathematical analysis and his share in the Riesz–Thorin theorem. Data about his life and some personal recollections are also
given.
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1. INTRODUCTION

Olof Thorin
(1912–2004)

Olof Thorin was never in the
service of a university
and worked as an actuarial
mathematician most of his life.
Still, the future will perhaps
show that he was one of
the best-known Swedish pure
mathematicians in the second
half of the 20th century. His
international fame mainly relies
on his share in the so-called
Riesz–Thorin theorem.

Searching in MathSciNet for
“Thorin”, we got 13 hits, all

concerning his stochastic activities only, which shows
his influence also in this area. Searching for “Anywhere
Thorin”, one gets the score 173, with “Anywhere Riesz–
Thorin”, 113. Not a bad outcome!

In Sections 2 and 3, Thorin’s achievements in
the stochastic theatre are set forth by Bondesson and
Grandell. In Section 4, Peetre reviews Thorin’s contribu-

tions to mathematical analysis, giving first also some
additional information about his life and death.

2. OLOF THORIN’S GENERALIZED
Γ-CONVOLUTIONS
(Lennart Bondesson)

At the end of the 1970s Olof Thorin published four
papers on infinite divisibility of probability distributions.
He introduced and developed a new technique that turned
out to be very powerful. The background, Thorin’s
contributions, and later developments are presented here.

2.1. Background

Infinite divisibility of probability distributions was
introduced by de Finetti in 1929. A distribution with
probability density f is infinitely divisible if, for any
n ≥ 1, it can be written as a convolution f = fn ∗ fn ∗
· · · ∗ fn with n components. A random variable X with
an infinitely divisible distribution can be represented as
a sum of any number of independent and identically
distributed variables Xn1,Xn2, . . . ,Xnn. The theory of
infinite divisibility was developed in the 1930s by
celebrities like Kolmogorov and Lévy in their study
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of stochastic processes. A general formula for the
characteristic function (i.e. the Fourier transform) of an
infinitely divisible distribution was derived early by Lévy
(see, e.g., Feller [1], Chapter 17). However, the formula
is not very useful in deciding whether or not a given
probability density is infinitely divisible. In the late
1960s and early 1970s some criteria that were sufficient
for a density to be infinitely divisible were developed. In
particular, a density on (0,∞) is infinitely divisible if it
is completely monotone, i.e. the signs of the derivatives
f (n), n = 0,1,2, . . . , alternate (Goldie–Steutel theorem).
But the class of such densities is not sufficiently rich
to cover many probability distributions that appear in
practice. In particular, the lognormal distribution is not
in this class. In a survey Steutel [2] mentioned the
infinite divisibility of the lognormal distribution as an
open problem.

2.2. Thorin’s contributions

Since the lognormal distribution with probability density

f (x) =
1√

2πσx
exp

(
−1

2

(
logx−µ

σ

)2
)

,

x > 0, (µ ∈ R, σ > 0)

has been used to model annual claims on insurance
companies, it was natural for the actuary Thorin
to try to verify its infinite divisibility. The annual
claims can be seen as sums of many independent
partial claims. He succeeded to show that something
much stronger than infinite divisibility holds for the
lognormal distribution [3]. A gamma distribution with
density g(x) = (Γ(β ))−1λ β xβ−1e−λx, x > 0 (β ,λ > 0),
has the moment generating function (mgf) φ(s) =∫ ∞

0 esxg(x)dx = (λ/(λ−s))β . The distribution is trivially
infinitely divisible. If we convolve different gamma
distributions and take limits, as Thorin did, we get a class
of infinitely divisible distributions with mgf of the form
(with t instead of λ )

φ(s) = exp
(

as+
∫ ∞

0
log

(
t

t− s

)
U(dt)

)
, ℜ(s)≤ 0,

where U(dt) is a nonnegative measure and a ≥ 0.
Equivalently,

φ ′(s)/φ(s) = a+
∫ ∞

0

1
t− s

U(dt). (2.1)

Except for the minus sign in front of s, the right-hand side
is the Stieltjes transform of a nonnegative measure. For
a gamma distribution, the measure U(dt) has all its mass
at one single point. These limit distributions were called
generalized Γ-convolutions by Thorin. We also use the
abbreviation GGC for them.

For the lognormal distribution, the mgf φ(s) =∫ ∞
0 esx f (x)dx is not explicit. But via Cauchy’s integral

formula for analytic functions, Thorin realized that to
prove that the distribution is a GGC it suffices to verify
that φ(s) can be analytically continued to a function that
is defined in the cut complex plane C\ [0,∞) and has no
zeros there and is such that arg(φ(s)) is nondecreasing as
s increases along the upper side of the positive real line.
Then

U(t) =
∫ t

0
U(dt ′) = π−1 arg(φ(t)).

He was successful, but there were many obstacles
for him to pass or often pass around with technical
skill. His proof is very long and only a little about
all the details can be mentioned here. One difficulty
is that U(∞) = ∞, which led him to first approximate
the lognormal distribution with a distribution that
corresponds to a product of a lognormal random variable
and an independent gamma-distributed variable with
integer parameter β . To show that arg(φ(s)), s > 0,
increases, he used and, ultimately, verified a very special
condition, namely that, for each c > 0, the function

h(x) = exp
(
−c(log(x+1+

√
x2 +2x))2

)
, x > 0,

is completely monotone. This condition did not appear to
be very central. According to a well-known theorem by
Bernstein, a function is completely monotone if and only
if it is the Laplace transform of a nonnegative measure
(Feller [1], Chapter 13).

The lognormal paper was a very strong piece of
research. Thorin, who was persistent, got fascinated
by a difficult problem, which he could not leave until
he had solved it. The paper was not his first one in
the field. Somewhat earlier he had written a simpler
one [4] about the Pareto distribution with density f (x) =
C (1 + cx)−γ , x > 0, where C is a normalizing constant.
Also this distribution was verified to be a GGC. Thorin’s
lognormal result meant that an important step forward
was taken in the theory of infinite divisibility. It turned
out that his technique could be generalized to give much
more general results. In [5] he generalized the result to
cover distributions corresponding to powers Xq, |q| ≥ 1,
of gamma variables X . Among other things, he had to use
and prove that the function

h(x) =exp
(
−c((x+1+

√
x2 +2x)α

+ (x+1+
√

x2 +2x)−α)
)

, x≥ 0,

is completely monotone for all c > 0 and α (α = 1/q)
such that 0 < |α| ≤ 1.

In [6] Thorin also extended the GGC class to include
distributions on the whole real line R. However, there
is no doubt that the lognormal paper was the most
significant one of the four papers. In the literature the
GGC class is also called the Thorin class of distributions
and the measure U is called the Thorin measure.
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2.3. Later developments

Thorin’s original theory was developed considerably
during the 1980s. The booklet by Bondesson [7] and the
recent book by Steutel and van Harn [8] describe much
of what happened. Developments somewhat related to
financial mathematics are described in, e.g., Barndorff-
Nielsen et al. [9].

It turned out that Thorin’s complete monotonicity
condition, which for him was one of several conditions
to check, was the only one that had to be verified. This
became clear at the end of the 1980s. The following
definition is central.

Definition 1. A positive function f on (0,∞) such that,
for each u > 0, f (uv) f (u/v) is completely monotone
as a function of w = v + v−1, is called hyperbolically
completely monotone (HCM).

Actually, the condition is the Thorin condition for
both the lognormal distribution and for the distribution
of powers of gamma variables, as can be seen by putting
w = 2(x+1). It is also easy to see that the functions

xβ−1 (β ∈ R), e−cx (c > 0),

and
(1+ cx)−γ (c > 0,γ > 0)

are HCM. Since complete monotonicity is preserved
under multiplication and pointwise limits, it follows
that also the HCM-class is closed with respect to
multiplication and limits. In particular it follows that all
functions of the form

f (x) = Cxβ−1
N

∏
i=1

(1+ cix)−γi , x > 0, (2.2)

and limits thereof are HCM. It can be verified that the
lognormal density is such a limit. It is also possible to
verify, though it is more difficult, that all HCM-functions
are limits of functions of the type (2.2).

A main theorem is the following result.

Theorem 1. A probability density f that is HCM is a
GGC and hence infinitely divisible.

This theorem is proved in [7]. It is accompanied
there by a heuristic proof that can briefly be described
as follows. Put for s ∈ C, ℜ(s)≤ 0,

J(s) = φ ′(s)φ(s) =
∫ ∞

0

∫ ∞

0
xesx+s̄y f (x) f (y)dxdy.

Via the hyperbolic substitution x = uv,y = u/v
and a Bernstein representation f (uv) f (u/v) =∫
[0,∞) exp(−uλw)K(dλ ;u), where K(dλ ;u) is a non-

negative measure for each u > 0, some manipulations,

and the very formal substitution v = u(λ − s̄)ρ (with
ρ > 0), one can see that

J(s) =
∫ ∞

0
2u2

∫ ∞

0

(∫ ∞

0
u(λ − s̄)

×exp
(
−u2|λ − s|2ρ− 1

ρ

)
dρ

)
K(dλ ;u)du.

The imaginary part of the integrand is positive in
the upper half-plane. Neglecting the earlier restriction
ℜ(s) ≤ 0, we then have that φ ′(s)/φ(s) is a function
with positive imaginary part in the upper half-plane. By a
theorem of Pick and Nevanlinna from complex analysis,
it is then representable in the form (2.1). QED

Now let X be a random variable with density f . We
write X ∼ HCM if f is HCM. A remarkable result is that
the HCM-class is closed with respect to multiplication
and division of random variables.

Theorem 2. If X ∼HCM and Y ∼HCM are independent
random variables, then XY ∼ HCM, X/Y ∼ HCM, and
Xq ∼ HCM for |q| ≥ 1.

By multiplying many independent gamma-
distributed random variables and taking limits, we
can get the lognormal distribution. Since the gamma
densities are HCM, Thorin’s GGC-result for the log-
normal distribution is also obtained via Theorems 1
and 2.

We now look at the functions in (2.2). If the factor
Cxβ−1 is neglected, the functions are indeed Laplace
transforms of GGCs. There is also the following stronger
result.

Theorem 3. A function f is HCM with f (0) = 1 if and
only if f is the Laplace transform of a GGC, i.e. if and
only if f (−s) is the mgf of a GGC.

The result provides a possibility for deciding
whether a distribution is a GGC with real methodology.
For instance, a stable distribution with Laplace transform
f (s) = exp(−csα), 0 < α ≤ 1, is a GGC since f is HCM.
It can also be shown via Theorem 3 that if X ∼ GGC
and Y ∼ HCM are independent random variables, then
XY ∼ GGC. A difficult open problem is whether also
the GGC-class is closed with respect to multiplication of
independent random variables. Another open problem is
whether, for X ∼ GGC, each power Xq, q ≥ 1, also has
its distribution in the GGC class.

Thorin’s remarkable complete monotonicity condi-
tion started all this.

2.4. Final comments

Olof Thorin and I corresponded from 1976 onwards.
He wrote very kind and somewhat ceremonious letters.
When he retired in 1977 he paid attention to, among other
things, Riemann’s hypothesis about the location of the
zeros of the ζ -function. At the end of the 1980s he gave
a GGC-formulation of the hypothesis that is reproduced
in an HCM-version in [7], p. 93. The only thing one has
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to do to prove the hypothesis is to check that the real
function

f (s) =
ξ ( 1

2 )
ξ ( 1

2 +
√

s)

is HCM, where

ξ (z) =
1
2

z(z−1)Γ
( z

2

)
π−z/2ζ (z)

is Riemann’s ξ -function. However, that is not so
simple to do. In his last letter to me Olof wrote that
he then mainly spent his time solving crosswords. In
2004, the year when Olof died, the big book by Steutel
and van Harn [8] appeared. It devotes much space
to generalized Γ-convolutions and HCM-densities. But
Olof never saw that book.

3. RUIN THEORY
(Jan Grandell)

In risk theory, or more precisely, collective risk theory,
one considers a model for the development of risk
business of an insurance company. The first attempt goes
back to Lundberg [10], while the works of Lundberg [11]
and Cramér [12] can be seen as introductions to today’s
theory. These papers appeared before the theory of
stochastic processes was developed. They must therefore
be viewed as pioneering works, not only in risk theory,
but also in the general theory of stochastic processes.
In Cramér [13] a stringent treatment is given, based on
Wiener–Hopf methods.

The foundations of the classical risk model are
provided by the following independent quantities:

(i) a Poisson process N = {N(t); t ≥ 0} with
intensity λ ;

(ii) a sequence {Zk}∞
1 of independent and identically

distributed positive random variables with distribu-
tion function F and mean value µ .

The risk process X(t) is defined by

X(t) = ct−
N(t)

∑
k=1

Zk,

where c is a positive real constant. In the model N(t) is
interpreted as the number of damages in the time interval
(0, t]. At each jump of N(t) the company has to pay
a random amount Zk. In compensation the company
obtains a premium c > µλ per time unit.

The ruin probability Ψ(u) of a company facing the
risk process X(t) and having initial capital u is defined
by

Ψ(u) = P{u+X(t) < 0 for some t > 0}.
Let h(r) =

∫ ∞
0 (erz − 1)dF(z), and assume that there

exists r∞, 0 < r∞ ≤ ∞, such that h(r) ↑ ∞ when r ↑ r∞.
A classical result in the Poisson case, which goes back to

Lundberg [11] and Cramér [12], is the Cramér–Lundberg
approximation

lim
u→∞

eRuΨ(u) = C, (3.1)

where the Lundberg exponent R is the positive solution
r of the equation λh(r) = cr and C = (c − λ µ)/
(λh′(R)− c).

3.1. Olof Thorin’s papers in risk theory

At the end of the 1960s Olof got a position as a
research actuary at the company Trygg-Hansa. His
principal obligation was to follow research in domains
of interest for insurance business. His first paper related
to insurance was [14], which treated certain auxiliary
functions introduced by Cramér.

However, Olof’s principal research concerned a
generalization of risk theory to the case where the
damages occur according to a renewal process. This
means that the times between the damages are
independent and identically distributed but their distribu-
tion need not be exponential as in the Poisson process
case. The first treatment of the ruin problem in the
renewal process case is due to Sparre-Andersen [15].

Now let N be a renewal process with inter-
occurrence time distribution function K and let Sk denote
the epoch of the kth claim. Then the variables S1, S2−S1,
S3−S2, . . . are independent and S2−S1, S3−S2, . . . have
the distribution function K. The process N is called
an ordinary renewal process if S1 has the distribution
function K as well. The process N is called a stationary
renewal process if K has finite mean 1/λ and if the
distribution function K0 of S1 is given by

K0(t) = λ
∫ t

0
(1−K(s))ds.

Let k̂(v) =
∫ ∞

0 e−vs dK(s) be the Laplace–Stieltjes trans-
form of K. In the renewal case the Lundberg exponent R
is the positive solution r of

(h(r)+1)k̂(cr) = 1.

Thorin succeeded to show that the Cramér–Lundberg
approximation (3.1) holds, both in the ordinary and
the stationary case, with the same R but with different
constants C. It may be noticed that the Poisson process
is the only renewal process for which those two cases
coincide. In no case the constant C is as explicit as in the
Poisson case.

From 1970 onwards he published a number of papers
on this topic. I restrict myself to mentioning here his
concluding survey [16]. Olof took a keen interest not only
in theory, but wrote also papers on numerical computa-
tion of ruin probabilities – most of them in cooperation
with Nils Wikstad (see, e.g., [17]).
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3.2. Personal recollections of Olof Thorin

From the end of the 1960s until the late 1990s Olof
and I met rather regularly when he visited seminars
at Stockholm University or at The Royal Institute of
Technology. Despite the difference in age we became
very good friends. Often Olof is pictured as an “elegant”
elderly gentleman. This may be true, but he was also a
very warm and considerate person.

4. OLOF THORIN AS AN ANALYST
(Jaak Peetre)

4.1. Personalia

I recall some salient facts about Olof Thorin’s life, basing
myself on a letter that he wrote to me and which is
reproduced in extenso in [18].

Olof Thorin was born in Halmstad on 23 February
1912. After graduating from the gymnasium in 1929,
he began, in the autumn of the same year, to study at
Lund University. In 1933 he got the degree of “Fil.kand.”
(Candidate of Philosophy; subjects: mathematics,
mechanics, mathematical statistics). He continued his
postgraduate studies under the colourful Hungarian
Marcel Riesz (see [19]) as advisor. Riesz assigned
Thorin the task of looking for various extensions of his
celebrated “Convexity Theorem” (nowadays called an
interpolation theorem; see below). This led first (1937)
to the degree of “Fil.lic.” (Licentiate of Philosophy) for
which he had to write a thesis, [20], and later (1948)
also to a PhD thesis, [21]. It is on the results of these
two theses that Olof Thorin’s renown resides. In 1937
Thorin got a job at an insurance company. In 1946 he
married. When he retired, in 1977, he is rumoured to
have said the words: “Finally I am free to devote myself
to mathematics!”

I met the Thorins only once on the occasion of ICM
70, right after our arrival at Nice airport (apparently
we had been on the same plane). To the extent that I
recall, they were both rather tall persons. In my memory
I placed Olof in the category of “elderly distinguished
gentlemen”. We had a short discussion. He asked me
how his result stood after so many years; diffident as
I am, I could not sufficiently emphasize that he was a
celebrity. But I am proud that I mentioned him in my
talk [22]. Around 1970 I began to assemble material
for an historical essay on interpolation. I received then
the letter from him that became the basis of my later
paper [18]. I had also replies from Mischa Cotlar and
Antoni Zygmund. However, the latter said that he
had forgotten most of what I had asked him about but
suggested that I also contact Alberto Calderón, a piece
of advice that I regretfully did not follow – and now it
is too late. (Moral: Old mathematicians should always
be interviewed before it is too late.) I also interrupted
my project, to be continued only in 2000. Then I wrote
again to Thorin asking for his consent to reproduce his

letter; this he approved, and he was also most helpful
in my work. We then became on quite friendly terms,
exchanging at least season’s greetings at the end of each
year.

In the autumn of 2002 the couple was exposed to a
great misfortune. Olof’s wife Ingegerd (b. 1 April 1916)
was taken to a convalescent home. Not long after, he
himself had a fracture of the neck of his femur.

My last letter to Olof Thorin was written on
11 March 2003. There I suggested that I might visit him
when I came to Stockholm next time. Reconsidering,
I realize that this was rather tactless as we were not so
close to each other, and he was old and in a difficult
situation. Quite right! In his reply of 7 April 2003
he declines my visit. Quote: “. . . taking account of the
primitive conditions in which I now live, I suggest that
we postpone this meeting . . . ”. Further: “Regretfully,
there is no other relative who could visit her more
regularly.” All this points to a rather isolated elderly
couple.

Olof Thorin died on 14 February 2004, at Danderyd
Hospital after, I believe, a short illness. Ingegerd died a
year later. The Thorins had no children, which always is
seen as a great misfortune, so also in their case.

4.2. The Riesz–Thorin theorem

At last, let us pass to (pure!) mathematics. This theorem
can be formulated as follows (here I am following [23],
pp. 2–3, with minor variations in the notation).

Theorem (Riesz–Thorin theorem). Let U and V be
two measure spaces equipped with positive measures
µ and ν . Moreover, let Lp(µ) and Lq(ν) denote
complex Lebesgue spaces with respect to suitable
positive measures µ and ν on U and V , respectively.
Let 1 ≤ p0, p1,q0,q1 ≤ ∞ and assume that T is a linear
operator, such that

T : Lp0(µ)→ Lq0(ν)

with norm M0 and

T : Lp1(µ)→ Lq1(ν)

with norm M1. Then

T : Lp(µ)→ Lq(ν)

with norm

M ≤M1−θ
0 Mθ

1 , (4.1)

where 0 < θ < 1 and

1
p

=
1−θ

p0
+

θ
p1

,
1
q

=
1−θ

q0
+

θ
q1

. (4.2)

Clearly (4.1) means that the norm of T is
logarithmically convex.
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The theorem was proved by Riesz [24] in the
real case, however, subject to the restrictions p0 ≤
q0 and p1 ≤ q1. (In that case the three points
(p−1

0 ,q−1
0 ), (p−1

1 ,q−1
1 ), and (p−1,q−1) in Figure 1 would

all have to be taken in the triangle below the diagonal
from (0,0) to (1,1). ) Indeed, Riesz formulated only a
finite-dimensional version of it, probably because, being
old and prudent, he avoided invoking function spaces.

Thus it was an extension to the complex case that
was given by Thorin. In [18] it is alluded to that it
was a remark by Otto Frostman after a seminar that put
him on the right track. There is also mention of an
extraordinary appraisal of Thorin’s proof expressed by
Littlewood [25], p. 20, who speaks of the most impudent
idea in mathematics.

The proof roughly runs as follows.

Sketch of proof of the Riesz–Thorin theorem. Choose f
with ‖ f |p = 1 and let h = T f . We have to estimate the
integral

〈h,g〉=
∫

V
h(y)g(y)dν .

It follows from Hölder’s inequality that

‖h‖q = sup{|〈h,g〉| : ‖g‖q′ = 1},

where q′ = q
q−1 (the conjugate index to q). Here, as

in [23], we will only deal with the cases where p0 6= p1
and q0 6= q1. This ensures that p < ∞ and q′ < ∞, which
means that we can assume that f and g take only finitely
many values and are supported on sets of finite measure.
(In fact, when p0 = p1 and/or q0 = q1, the proof is no
more difficult.)

Fig. 1. A geometric illustration of formula (4.2).

The basic idea is now to perform a deformation of
the points f and g, imbedding them into suitable complex
curves. The equations of these curves are determined
by two analytic functions ϕ(z) and ψ(z), where z is
a complex variable restricted to the closed strip S =
{0≤ℜz≤ 1}.

For z ∈ S set

1
p(z)

=
1− z

p0
+

z
p1

,
1

q′(z)
=

1− z
q′0

+
z

q′1
.

Thorin’s choices of ϕ and ψ are the following:

ϕ(z) = ϕ(x,z) = | f (x)|p/p(z)sign( f (x)), x ∈U ;

ψ(z) = ψ(y,z) = |g(y)|q′/q′(z)sign(g(y)), y ∈V.

Further, we put

F(z) = 〈T ϕ(z),ψ(z)〉.

Clearly, F(z) is continuous in S and analytic in its interior
with F(θ) = 〈T f ,g〉. Moreover,

‖ϕ(it)‖p0 = ‖ f‖p/p0
p = 1

and
‖ϕ(1+ it)‖p1 = ‖ f‖p/p1

p = 1 ∀ t ∈ R,

and analogously for ψ . If we now apply the Doetsch
three line theorem (a variation of Hadamard’s better
known three circle theorem), we find that |〈T f ,g〉| ≤
M1−θ

0 Mθ
1 and the proof is complete.

The Riesz–Thorin theorem has many important
applications, in particular in harmonic analysis. For
instance, it implies immediately the Hausdorff–Young
theorem: if F is the Fourier transform on a locally
compact Abelian group G 1, then one has F : Lp(G)→
Lp′(Ĝ), 1≤ p≤ 2, where Ĝ is the dual group of G. This
is a generalization of Plancherel’s theorem (p = 2).

In parallel with Thorin’s work, Jósef Marcinkie-
wicz2, Zygmund’s brilliant student, found another very
important interpolation theorem. It was proved by
completely different methods. Like Thorin, Marcinkie-
wicz published an announcement [26] of his result in
1939. These two theorems complement each other in
several interesting and useful ways.

History took a new turn around 1960. Instead
of only considering Lebesgue spaces in these kinds of
contexts, mathematicians started “interpolating” between
“abstract” spaces such as Banach spaces (Calderón,
Kreı̌n, Lions, etc.). In particular, Thorin’s theorem
was now incorporated in the so-called complex method
(see [23], Chapter 5).

1 Examples are provided by the classical cases where G is the real line R or the unit circle T= R/2πZ.
2 Jósef Marcinkiewicz (1910–1941), as a reservist of the Polish Army probably became a victim of the Katyn massacre, when

4421 Polish officers were executed by the NKVD. His theorem is also applicable in nonlinear situations. Marcinkiewicz
was probably the first to use the word “interpolation” in this context. Or might it have been Banach?
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Olof Thorini elu ja töö

Lennart Bondesson, Jan Grandell ja Jaak Peetre

On antud ülevaade Olof Thorini (1912–2004) panusest matemaatika eri valdkondadesse: matemaatilisse analüüsi,
tõenäosusteooriasse ja kindlustusmatemaatikasse. Tõenäosusteooria alal oli tema uurimisvaldkonnaks eeskätt
lõpmatult jagunevate jaotuste teooria, kindlustusmatemaatikas arendas ta laostumisteooriat, leides hinnanguid
kindlustusfirma laostumistõenäosusele. Tema tuntus matemaatikuna rajaneb aga eelkõige tulemustele matemaatilises
analüüsis, kus olulisimad tulemused on saadud nn Rieszi-Thorini teoreemi näol ja sellega seotud teooria arendamisel.
Artiklis on ära toodud ka Thorini eluloolised andmed ja autorite isiklikke mälestusi temast.


