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Abstract. Regular matrix methods that improve and accelerate the convergence of sequences and series are studied. Some problems
related to the speed of convergence of sequences and series with respect to matrix methods are discussed. Several theorems on the
improvement and acceleration of the convergence are proved. The results obtained are used to increase the order of approximation
of Fourier expansions and Zygmund means of Fourier expansions in certain Banach spaces.
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1. INTRODUCTION AND PRELIMINARIES

In recent years the most significant results in convergence acceleration have been proved for nonlinear
methods of acceleration (see, for example, [1,2]). The present paper deals with regular matrix methods that
improve and accelerate the convergence of sequences and series. The research has been inspired by the
papers [3−8] where this problem is considered. Some data on the improvement of convergence by regular
matrix methods are available also in [9]. Let us describe the main results of the mentioned papers more
precisely. For this purpose we need some notions. Let M = (mnk) be a matrix with real or complex entries.
Throughout the paper we assume that indices and summation indices change from 0 to ∞ if not specified
otherwise. A sequence x = (xk) is said to be M-summable if the sequence Mx = (Mnx), where

Mnx = ∑
k

mnkxk,

is convergent.
We denote the set of all M-summable sequences by cM . Thus, a matrix M determines the summability

method on cM , which we also denote by M. A method M is called sequence-to-sequence regular (shortly,
Sq-Sq regular) if

lim
n

Mnx = lim
n

xn

for each convergent sequence x = (xk) . Classically the following concepts are used to estimate and compare
the speeds of convergence of sequences.

Definition 1.1 ([1,5]). A method M is called accelerating the convergence if the relation

|Mnx− limn Mnx|
|xn− limn xn| → 0 for n→ ∞ (1.1)
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holds for every convergent sequence x = (xn) . If relation (1.1) holds for particular x, then it is said that M
accelerates the convergence of this x. If M accelerates the convergence of x, then it is said that Mx converges
faster than x.

Definition 1.2 (cf. [5], p. 310). A matrix method M is said to be accelerating with respect to a matrix method
A if Mx converges faster than Ax for every x ∈ cA. If Mx converges faster than Ax for particular x ∈ cA, then
M is said to be accelerating with respect to A for this x.

Weakened criteria are used to estimate and compare the speeds of convergence of sequences in [3,4]
and [6−9]. Let λ = (λk) be a sequence with 0 < λk ↗.

Definition 1.3 ([3,4]). A convergent sequence x = (xk) with

lim
k

xk = ς and lk = λk (xk− ς)

is called bounded with the speed λ (shortly, λ -bounded) if lk = O(1) and convergent with the speed λ
(shortly, λ -convergent) if there exists the finite limit limk lk.

We denote the set of all λ -bounded sequences by mλ and the set of all λ -convergent sequences by cλ .
For λk = O(1) we get cλ = mλ = c, where c is the set of all convergent sequences. A sequence x = (xk)
is called Aλ -bounded or Aλ -summable if Ax ∈ mλ or Ax ∈ cλ , respectively. We denote the set of all Aλ -
bounded sequences by mλ

A and the set of all Aλ -summable sequences by cλ
A . If λ is a bounded sequence,

then mλ
A = cλ

A = cA.
Let µ = (µk) be another sequence with 0 < µk ↗.

Definition 1.4 ([4,6−8]). A method M is called improving λ -convergence or λ -boundedness of sequences if,
respectively, cλ ⊆ cµ

M or mλ ⊆mµ
M with µk/λk −→∞. If c⊆ cµ

M or c⊆mµ
M with µk 6= O(1), then M is called

improving the convergence of sequences.

Definition 1.5 ([9]). We say that M improves Aλ -summability or Aλ -boundedness if, respectively, cλ
A ⊆ cµ

M
or mλ

A ⊆ mµ
M with µk/λk −→ ∞. If cA ⊆ cµ

M or cA ⊆ mµ
M, we say that M improves A-summability.

It is not difficult to see that if A is the identity method, i.e. A = I = (δnk), where δnn = 1 and δnk = 0 for
n 6= k, then Definition 1.5 coincides with Definition 1.4.

Kornfeld [5] proved that any Sq-Sq regular method M cannot accelerate the convergence and cannot be
accelerating with respect to another Sq-Sq regular method A. Kangro ([3], pp. 139–140) proved that an
Sq-Sq regular triangular method M = (mnk) (i.e. mnk = 0 for k > n) cannot improve the λ -convergence.
In [9] it is proved that any Sq-Sq regular triangular method improves neither the convergence nor the λ -
boundedness for an unbounded speed λ . In [9] it is also shown that any triangular method M improves
neither A-summability nor Aλ -boundedness for a normal method A = (ank) (i.e. A is triangular and ann 6= 0)
if limn Mn(x) = limn Anx for every x ∈ cA or x ∈mλ

A , respectively. Tammeraid [6−8] generalized the concepts
of Aλ -summability and Aλ -boundedness, considering instead of a matrix with real or complex entries a
matrix whose elements are bounded linear operators from a Banach space X into a Banach space Y . He
proved that a triangular Sq-Sq regular method cannot improve the λ -boundedness ([8], pp. 370–371) and
the λ -convergence ([7], p. 91).

The aim of the present paper is to inquire into the properties of nontriangular regular matrix methods
improving and accelerating the convergence. The question is whether there exist such regular methods
that improve the convergence, the λ -boundedness or the Aλ -boundedness. The results of the papers [3−9]
show that the answer to this question is always negative for triangular Sq-Sq regular methods. The results
giving a positive answer to that question are proved in the present paper for nontriangular regular methods
(Propositions 3.1–3.3, Corollary 3.2, Theorem 4.2). Moreover, the convergence acceleration on the subsets
of convergent sequences and series is studied. In addition to Sq-Sq regular methods, series-to-sequence
regular (shortly, Sr-Sq regular) methods are used, and it is proved that for some cases these methods
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have better convergence improving and accelerating properties than Sq-Sq regular methods (compare, for
example, Theorem 3.2 and Proposition 3.1). A method M is called Sr-Sq regular if

lim
n

Mnx = ∑
k

xk

for each x = (xk) ∈ cs, where

cs = {x = (xk) | (Xn) ∈ c}; Xn =
n

∑
k=0

xk.

It is easy to see that the set of sequences cs is equivalent to the set of convergent series. We note that Sr-Sq
regular methods play an important role in the approximation theory (see, for example, [10,11]). In the present
paper Sr-Sq regular methods are used for increasing the order of approximation of Fourier expansions and
Zygmund means of Fourier expansions in certain Banach spaces.

The paper is organized as follows. In Section 2 some notions and auxiliary results are presented, which
are needed later. In Section 3 the improvement of the convergence and λ -boundedness, and convergence
acceleration by nontriangular Sq-Sq and Sr-Sq regular methods are studied. Also some examples of Sr-
Sq regular methods improving the convergence of series, and some examples of Sq-Sq regular methods
improving λ -boundedness of sequences are presented. Besides, the sufficient conditions for a nontriangular
method M to be accelerating for all elements from a certain subset of c or cs are specified. In Section 4 it is
shown that using some nontriangular regular method M, it is possible to improve Aλ -boundedness for some
unbounded speed λ if A is an Sr-Sq regular Zygmund method Zr (r > 1). Also the sufficient conditions for
M to be accelerating with respect to Zr for all elements from a certain subset of cZr are found. In Section 5
the obtained results are used for increasing the order of approximation of Fourier expansions and Zygmund
means of Fourier expansions in certain Banach spaces.

2. AUXILIARY RESULTS

Throughout this paper we assume that λ = (λk) and µ = (µk) are sequences with 0 < λk,µk ↗ ∞; A is a
normal matrix with its inverse matrix A−1 = (ηkl); B = (bnk) is a triangular matrix, and M = (mnk) is an
arbitrary matrix. We say that M transforms mλ

A or cA into mµ
B if the transformation y = Mx exists and y ∈mµ

B
for every x ∈ mλ

A or x ∈ cA, respectively.
The equalities

r

∑
k=0

mnkxk =
r

∑
l=0

Hr
nltl (n = 0,1, ...),

with

Hr
nl =





r
∑

k=l
mnkηkl (l ≤ r),

0 (l > r),

and tl = Alx hold for each x ∈ cA. Therefore we get the following results by Theorem 20.2 of [12] (see
also [4], pp. 138–139) and Theorem 2.3.7 of [13].

Lemma 2.1 (cf. [14], p. 55). The matrix transformation y = Mx exists for each x ∈ mλ
A if and only if

thereexist f inite limits lim
r

Hr
nl = Hnl, (2.1)

thereexist f inite limits lim
r

r

∑
l=0

Hr
nl, (2.2)
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∑
l

|Hnl|
λl

= On (1) , (2.3)

lim
r

r

∑
l=0

∣∣Hr
nl−Hnl

∣∣
λl

= 0. (2.4)

Lemma 2.2. The matrix transformation y = Mx exists for each x ∈ cA if and only if conditions (2.1), (2.2)
are fulfilled and

r

∑
l=0
|Hr

nl|= On (1) . (2.5)

Let G = (gnk) = BM and

γ r
nl =





r
∑

k=l
gnkηkl (l ≤ r),

0 (l > r).

Then we can formulate

Lemma 2.3 (see [14], pp. 55–57). A matrix M transforms mλ
A into mµ

B if and only if conditions (2.1)–(2.4)
are fulfilled and

(ρn) ∈ mµ for ρn = lim
r

r

∑
l=0

γ r
nl , (2.6)

thereexist f inite limits lim
n

γnl = γl f or γnl = lim
r

γ r
nl , (2.7)

∑
l

|γl|
λl

< ∞, (2.8)

µn ∑
l

|γnl − γl|
λl

= O(1) . (2.9)

We say that methods A and B are M-consistent on mλ
A or on cA if the transformation Mx exists and

lim
n

Bn(Mx) = lim
n

Anx

for each x ∈ mλ
A or x ∈ cA, respectively. If B is the identity matrix, i.e. B = I, then Bn (Mx) = Mnx for each

x ∈ mλ
A or x ∈ cA. Hence M-consistency of A and I on mλ

A or on cA coincides with the usual consistency of
A and M respectively on mλ

A or on cA. By Lemmas 2 and 4 of [9] and Lemma 2.2 we immediately get the
following results.

Lemma 2.4. A matrix M transforms cA into mµ
B if and only if conditions (2.1), (2.2), (2.5)–(2.7) hold and

∑
l
|γl|< ∞, (2.10)

µn ∑
l
|γnl − γl|= O(1) . (2.11)



A. Aasma: Acceleration of convergence 7

Lemma 2.5. Matrix methods A and B are M-consistent on cA if and only if conditions (2.1), (2.2), (2.5) hold
and limn ρn = 1, γl = 0 and ∑l |γnl |= O(1).

3. ACCELERATION OF CONVERGENCE AND IMPROVEMENT OF CONVERGENCE
AND λ -BOUNDEDNESS WITH REGULAR MATRIX METHODS

First we consider the relation between the improvement of λ -boundedness and the acceleration of
convergence in mλ .

Theorem 3.1. If M improves λ -boundedness of sequences, then M accelerates the convergence of all
sequences from the subset m̂λ of mλ , defined as follows:

m̂λ = {x = (xn) ∈ mλ |λn

∣∣∣xn− lim
n

xn

∣∣∣ > m; m > 0}.

Proof. As M improves λ -boundedness of sequences, there exists µ = (µk), µk/λk −→∞ so that m̂λ ⊂mλ ⊆
mµ

M. Therefore for every x = (xn) ∈ m̂λ we get

µn |Mnx− limn Mnx|
λn |xn− limn xn| = O(1).

Hence relation (1.1) holds for every x ∈ m̂λ . Thus M accelerates the convergence of all sequences from m̂λ .

A method M is said to be conull if c⊆ cM and

lim
n ∑

k
mnk = ∑

k
lim

n
mnk.

It is well known that a conull method cannot be Sq-Sq regular (see [13], p. 49). Now we prove the following
auxiliary result.

Lemma 3.1. If A and B are M-consistent on cA and M transforms cA into mµ
B , then Γ = (γnl) is a conull

matrix.

Proof. By Lemma 2.5 we get γl = 0. Hence

lim
n ∑

l
γnl = 0 and ∑

l
|γnl |= O(1)

by condition (2.11) of Lemma 2.4, because 0 < µk ↗ ∞. Therefore Γ = (γnl) is an Sq-Sq conservative
method by Theorem 2.3.7 of [13] and

lim
n ∑

l
γnl = ∑

l
γl.

Thus Γ is a conull method.

As Γ = M for A = B = I and any conull method cannot be Sq-Sq regular, with the help of Lemma 3.1
we get the following result.

Theorem 3.2. Any Sq-Sq regular method cannot improve the convergence.

As c⊆ cA for an Sq-Sq regular method A, Theorem 3.2 implies

Theorem 3.3. Any Sq-Sq regular method M cannot improve Aλ -summability of any other Sq-Sq regular
method A.
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Note that it is possible to prove Theorems 3.2 and 3.3 with the help of Theorem 1 of [4].
Now we inquire into the properties of nontriangular Sr-Sq regular methods improving and accelerating

the convergence. For this purpose we first introduce some necessary notions. A series is said to be
λ -bounded if the sequence of partial sums of this series is λ -bounded. Let

bsλ = {x = (xk) | (Xn) ∈ mλ}; Xn =
n

∑
k=0

xk.

It is easy to see that bsλ ⊆ cs.

Definition 3.1. We say that M accelerates the convergence of a series ∑k xk if the sequence Mx (where
x = (xk)) converges faster than the sequence of partial sums (Xn) of this series. If Mx converges faster than
(Xn) for every x ∈ cs, then we say that M accelerates the convergence of series.

Definition 3.2. If bsλ ⊆mµ
M with µk/λk −→∞, we say that M improves λ -boundedness of series. If cs⊆mµ

M
with µk 6= O(1), we say that M improves the convergence of sequences.

From Definitions 3.1 and 3.2 and Theorem 3.1 we immediately get

Corollary 3.1. If M improves λ -boundedness of series, then M accelerates the convergence of all sequences

from the subset b̂s
λ

of bsλ , defined as follows:

b̂s
λ

= {x = (xn) | (Xn) ∈ m̂λ}.
The assertion of Theorem 3.2 cannot be extended to Sr-Sq regular methods. Indeed, it is not difficult to

see that the Sr-Sq regular method M = (mnk), where mnk = 1 for all n and k, improves the convergence of
series. For getting more complicated examples we first prove

Lemma 3.2. Let M = (mnk) be such an Sr-Sq regular method where mn0 = 1. Then bsλ ⊆ mµ
M if and only if

µn ∑
l

|∆mnl |
λl

= O(1) (3.1)

and cs⊆ mµ
M if and only if

µn ∑
l
|∆mnl |= O(1) . (3.2)

Proof. It is sufficient to show for bsλ ⊆ mµ
M that condition (3.1) is equivalent to the conditions of Lemmas

2.1 and 2.3 if B = I and A = Σ = (ank), where

ank = 1 if k ≤ n and ank = 0 if k > n.

Similarly it is sufficient to show for cs⊆ mµ
M that condition (3.2) is equivalent to the conditions of Lemmas

2.2 and 2.4 if A = Σ and B = I. For the proof of the above-mentioned equivalences we first note that

γ r
nl = Hr

nl, Γ = (γnl) = (Hnl)

for A = Σ and B = I, where the inverse matrix Σ−1 = (ηnk) of Σ is defined by the equalities

ηnn = 1, ηn,n−1 =−1 and ηnk = 0 if k > n or k < n−1.

Therefore we have γ 0
nl = H0

nl = mn0 and

γ r
nl = Hr

nl =





∆mnl (l ≤ r−1),
mnr (l = r),
0 (l > r)
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for r ≥ 1 and
r

∑
l=0

γ r
nl =

r

∑
l=0

Hr
nl = mn0, ρn = mn0, γnl = Hnl = ∆mnl.

It immediately follows from these relations that conditions (2.1), (2.2), (2.6), and (2.7) are fulfilled.
We also get that the equalities

r

∑
l=0

∣∣Hr
nl −Hnl

∣∣
λl

=
|mn,r+1|

λr

and
r

∑
l=0
|Hr

nl|=
r−1

∑
l=0
|∆mnl|+ |mnr|

hold. Moreover, it follows from the Sr-Sq regularity of M that

∑
l
|∆mnl |= O(1) , lim

n
mnk = 1

(see Proposition 14 of [15]) and the finite limits limr mnr exist (see [16], pp. 199–200). Hence conditions
(2.4), (2.5) hold and γl = limn ∆mnl = 0. Therefore conditions (2.8), (2.10) also hold and conditions (2.9),
(2.11), respectively, take the forms (3.1) and (3.2). As now the validity of condition (2.3) follows from (3.1),
the proof is complete.

Let us define M = (mnk) as follows:

mnk =





1 (k = 0),

1− ks

(n+1)s+t (k ≥ 1), (3.3)

where s < 0 and s+ t > 0. As limn mnk = 1 and

N

∑
k=0
|∆mnk|= 2− (N +1)s

(n+1)s+t = O(1) , (3.4)

M is an Sr-Sq regular method by Proposition 14 of [15]. Also limk mnk = 1 6= 0. Consequently, the M defined
in this way is equivalent to Σ, i.e. cM = cs (see [16], pp. 199–200).

Proposition 3.1. The Sr-Sq regular method M = (mnk) defined by (3.3), where s < 0 and s+ t > 0, improves
the convergence of series.
Proof. It is sufficient to show by Lemma 3.2 that condition (3.2) holds for some unbounded sequence µ . We
define µ = (µk) by the equalities

µk = (k +1)β ; β > 0. (3.5)

As from relation (3.4) we get
∞

∑
k=0
|∆mnk|= 2

(n+1)s+t ,

it follows that

µn

∞

∑
k=0
|∆mnk|= 2(n+1)β−s−t = O(1)

if and only if β ≤ s+ t. Thus condition (3.2) is valid and consequently, cs⊆ mµ
M for β = s+ t.

Further, we notice that condition (3.1) follows from (3.2) for every unbounded sequence λ . Hence from
the proof of Proposition 3.1 we imply the following result with the help of Corollary 3.1 and Lemma 3.2.
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Corollary 3.2. The Sr-Sq regular method M = (mnk) defined by (3.3), where s < 0 and s+ t > 0, improves

λ -boundedness of series and accelerates the convergence of all sequences from b̂s
λ

for λ = (λk), defined
by equalities

λk = (k +1)α ; α > 0 (3.6)

if α < s+ t.

Let now M = (mnk) be defined by the relation

mnk =





1− k

(n+1)cn+β+σ (k ≤ n+N),

0 (k > n+N),
(3.7)

where N is a fixed positive integer and c, β , σ > 0. Using Proposition 14 of [15], it is not difficult to check
that the method defined in this way is Sr-Sq regular.

Proposition 3.2. Let M = (mnk) be defined by (3.7), where N is a fixed positive integer and c, β , σ > 0.

Then M improves λ -boundedness of series and accelerates the convergence of all sequences from b̂s
λ

for
λ = (λk) , defined by the equalities λk = (k +1)ck if β ≤ c and σ ≥ 1.

Proof. Let µ = (µk) be defined with the help of equalities

µk = (k +1)ck+β .

As µk/λk −→∞, it is sufficient to show by Definition 3.2 and Corollary 3.1 that bsλ ⊆mµ
M. For this purpose

we prove that condition (3.1) is fulfilled. Let us write

T = µn ∑
l

|∆mnl |
λl

= T1 +T2,

where

T1 = µn

n

∑
l=0

|∆mnl|
λl

and T2 = µn

∞

∑
l=n+1

|∆mnl |
λl

.

As the sequence λ is monotonically increasing and

∆mnl =





1

(n+1)cn+β+σ (l ≤ n+N−1),

1− N +n

(n+1)cn+β+σ (l = n+N),

we have

T1 ≤ µn

n

∑
l=0
|∆mnl|= (n+1)1−σ = O(1) ,
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since σ ≥ 1, and

T2 ≤ µn

λn+1

∞

∑
l=n+1

|∆mnl|= (n+1)cn+β

(n+2)c(n+1)

[
N−1

(n+1)cn+β+σ +

∣∣∣∣∣1−
N +1

(n+1)cn+β+σ

∣∣∣∣∣

]

= O(1)(n+1)β−c = O(1) ,

since β ≤ c. Consequently, T = O(1) , i.e condition (3.1) is satisfied. As M is Sr-Sq regular and mn0 = 1,
bsλ ⊆ mµ

M by Lemma 3.2.

Now we show that there exist nontriangular Sq-Sq regular methods, improving λ -boundedness for an
unbounded speed λ . Let M = (mnk) be defined by the relation

mnl =





l
sn

(⌊
nb

⌋≤ l ≤
⌊
(n+1)b

⌋)
,

0
(

l <
⌊
nb

⌋
or l >

⌊
(n+1)b

⌋)
,

(3.8)

where

sn =
b(n+1)bc

∑
l=bnbc

l,

b > 1, and the symbol bxc denotes the integer part of number x. According to Theorem 2.3.7 of [13], the M
defined in this way is Sq-Sq regular.

Proposition 3.3. Let M = (mnk) be defined by (3.8), where b > 1. Then M improves λ -boundedness and
accelerates the convergence of all sequences from m̂λ for λ = (λk) defined by equalities (3.6).

Proof. It is sufficient to prove by Definition 1.4 and Theorem 3.1 that the conditions of Lemma 2.3 are
fulfilled for A = B = I and for some µ = (µk) satisfying the property µk/λk −→∞. We define such µ = (µk)
by the relation

µk = (k +1)α+σ ; σ > 0

and notice that the transformation y = Mx exists for each x ∈ c. Hence conditions (2.1)–(2.4) are fulfilled.
As

γ r
nl = Hr

nl =
{

mnl (l ≤ r),
0 (l > r)

and γnl = Hnl = mnl , we have γl = 0 and ρn = 1. Consequently, conditions (2.6)–(2.8) are satisfied. Further,
we can write

V = µn ∑
l

|γnl − γl|
λl

≤ µn

λbnbc
=

(n+1)α+σ

(bnbc+1)α = O(1)(n+1)α+σ−bα .

Hence V = O(1), i.e., condition (2.9) is valid if σ ≤ (b−1)α . Such positive σ exists for b > 1. This
completes the proof.

The Sq-Sq regular methods improving λ -boundedness are rather specific. We show that the following
result holds.

Proposition 3.4. Let M = (mnk) be an Sq-Sq regular method, and the property µk/λk+N −→ ∞ be fulfilled
for λ = (λk), µ = (µk) and for all N = 0,1, ... . If there exist ε > 0 and a nonnegative integer I so that

n+I

∑
l=0
|mnl| ≥ ε

for all n, then mλ * mµ
M.
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Proof. As γnl = mnl and γl = 0 (see the proof of Proposition 3.3),

µn ∑
l

|γnl − γl|
λl

= µn ∑
l

|mnl|
λl

≥ µn

λn+I

n+I

∑
l=0
|mnl | ≥ µn

λn+I
ε −→ ∞.

Thus condition (2.9) of Lemma 2.3 is not satisfied and therefore mλ * mµ
M .

4. IMPROVEMENT OF Aλ -BOUNDEDNESS USING NONTRIANGULAR REGULAR
MATRIX METHODS

First we explain the relationship between Definitions 1.2 and 1.5.

Theorem 4.1. If M improves Aλ -boundedness, then M is accelerating with respect to A for all sequences
from the subset m̂λ

A of mλ
A , defined as follows:

m̂λ
A = {x = (xn) ∈ mλ

A |λn

∣∣∣Anx− lim
n

Anx
∣∣∣ > m; m > 0}.

Proof is similar to the proof of Theorem 3.1.

It is proved in [9] that any triangular method M cannot improve Aλ -boundedness for an unbounded
speed λ and a normal method A if M is consistent with A on mλ

A . We show that this assertion cannot be
extended to nontriangular methods M. Let us prove that a nontriangular Sr-Sq regular method M improving
Aλ -boundedness exists for some normal Sr-Sq regular method A. For this purpose we consider the case
where A is a Riesz method. Let (pn) be a sequence of nonzero complex numbers, Pn = p0 + ...+ pn 6= 0,
P−1 = 0 and let P = (R, pn) = (ank) be a Riesz method generated by (pn), i.e. (see [17], p. 113)

ank =
{

1−Pk−1/Pn (k ≤ n),
0 (k > n).

It is easy to see that P is a normal method.

Lemma 4.1 (see [14], pp. 59–61). Let P be a Riesz method satisfying the properties

bsλ ⊆ mλ
P , Pn = O(Pn−1) ,

pn

Pn
= O

(
pn−1

Pn−1

)
. (4.1)

A matrix M = (mnk) transforms mλ
P into mµ

B if and only if the following conditions hold:

∑
l

1
λl

∣∣∣∣Pl∆
∆mnl

pl

∣∣∣∣ = On (1) f or ∆mnl = ∆lmnl = mnl−mn,l+1, (4.2)

lim
l

Plmnl

plλl
= 0, (4.3)

(1,0,0, ...) ∈ mµ
G, (4.4)

thereexist the f inite limits lim
n

gnl = gl, (4.5)

∑
l

1
λl

∣∣∣∣Pl∆
∆gl

pl

∣∣∣∣ < ∞, (4.6)

µn ∑
l

1
λl

∣∣∣∣Pl∆
∆(gnl−gl)

pl

∣∣∣∣ = O(1) . (4.7)



A. Aasma: Acceleration of convergence 13

Now we consider (R, pn) in the special case where pn is defined by the relation pn = (n+1)r−nr (r > 1).
The Riesz method defined in this way is called the Zygmund method and is denoted by Zr (see [17], p. 112).
Thus Zr = (ank) is defined by the relation

ank =





1−
(

k
n+1

)r

(k ≤ n),

0 (k > n).

It is not difficult to verify that Zr is an Sr-Sq regular method. We also have cs * mλ
Zr for each unbounded

sequence λ . Indeed, let Z̄r = (∆ank) for Zr = (ank). Then (see [17], pp. 51–52)

Zr
nx = Z̄r

nX (4.8)

for every x = (xk) ∈ cZr , where X = (Xk) is the sequence of partial sums of series ∑k xk. Hence Z̄r is an
Sq-Sq regular method, because Zr is Sr-Sq regular. As Z̄r cannot improve the convergence of sequences by
Corollary 3 of [9], Zr cannot improve the convergence of series by (4.8), i.e., cs* mλ

Zr for each unbounded
speed λ .

Using Lemma 4.1 for B = I, M = Σ, and P = Zr, it is possible to prove that mλ
Zr $ cs if λ = (λk) is

defined by the relation λk = (k +1)α , α > 1. In addition, M = (mnk) defined by (3.3), where s < 0 and
s+ t > 0, is Sr-Sq regular. Therefore we immediately get

Proposition 4.1. Let M = (mnk) be defined by (3.3), where s < 0 and s+ t > 0, and λ = (λk) by the relation
λk = (k +1)α , α > 1. Then Zr (r > 1) and M are consistent on mλ

Zr .

Now we prove the main result of this section.

Theorem 4.2. The Sr-Sq regular method M defined by (3.3), where s < 0 and s + t > 1, improves (Zr)λ -
boundedness and is accelerating with respect to Zr for all sequences from m̂λ

Zr if λ = (λk) is defined by
equalities (3.6), where 1 < α < r and α < s+ t.
Proof. It is sufficient to show by Definition 1.5 and Theorem 4.1 that mλ

Zr ⊆ mµ
M for some speed µ = (µk),

satisfying the property µk/λk −→∞. To show it, we prove that the conditions of Lemma 4.1 are fulfilled for
P = Zr, B = (δnk), for M = (mnk) defined by (3.3), and for µ = (µk) defined by the relation

µk = (k +1)s+t .

First we note that conditions (4.1) are satisfied (see [14], p. 62). Further, we can write

L = ∑
l

1
λl

∣∣∣∣Pl∆
∆mnl

pl

∣∣∣∣ = L1 +L2,

where

L1 =
1

(n+1)s+t

∣∣∣∣1−
2s−1
2r−1

∣∣∣∣

and

L2 =
1

(n+1)s+t

∞

∑
l=1

(l +1)r−α
∣∣∣∣
(l +1)s− ls

(l +1)r− lr −
(l +2)s− (l +1)s

(l +2)r− (l +1)r

∣∣∣∣ .
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We subsequently get with the help of the mean-value theorem of Cauchy that

L2 =
|s|

r (n+1)s+t

∞

∑
l=1

(l +1)r−α ∣∣(l +θl)
s−r− (l +1+θl+1)

s−r∣∣

=
|s(r− s)|

r (n+1)s+t

∞

∑
l=1

(l +1)r−α (1+θl+1−θl)
(
l +θl +θ 1

l
)s−r−1

=
|s(r− s)|

r (n+1)s+t

∞

∑
l=1

(
l +1

1+θl +θ 1
l

)r

(1+θl+1−θl)
(
l +θl +θ 1

l
)s−1

(l +1)−α ,

where 0 < θl, θl+1 < 1, and 0 < θ 1
l < 2. As

(
l +1

1+θl +θ 1
l

)r

= O(1) and 1+θl+1−θl < 2,

we have

L2 = O(1)(n+1)−s−t
∞

∑
l=1

(l +1)s−α−1 = On (1) , (4.9)

because s < α . Therefore L = On (1), i.e. condition (4.2) is satisfied.
We can write with the help of the mean-value theorem of Lagrange that

Plmnl

plλl
<

(l +1)r−α

(l +1)r− lr =
(l +1)r−α

r (l +θl)
r−1 = O(1)(l +1)1−α = o(1) ,

since 0≤ mnk < 1 and α > 1. Thus condition (4.3) is satisfied.
As now gnl = mnl and gl = 1, conditions (4.4)–(4.6) are fulfilled. Further, we write

T = µn ∑
l

1
λl

∣∣∣∣Pl∆
∆(gnl −gl)

pl

∣∣∣∣ = µnL = µnL1 + µnL2.

As µnL1 = O(1) and relation (4.9) implies

µnL2 = O(1)
∞

∑
l=1

(l +1)s−α−1 = O(1) ,

since s < α , we get T = O(1), i.e., condition (4.7) is fulfilled. Consequently, mλ
Zr ⊆ mµ

M by Lemma 4.1.
This completes the proof.

5. SOME REMARKS ON INCREASING THE ORDER OF APPROXIMATION OF FOURIER
EXPANSIONS BY REGULAR NONTRIANGULAR MATRIX METHODS

Let X be a Banach space with norm ‖ ◦ ‖, and c(X), cs(X), and cA (X) be the spaces of convergent
sequences, convergent series, and A-summable sequences, respectively. Moreover, let

mλ (X) = {x = (xk) |xk ∈ X , ∃ limxk = ξ , λk ‖ xk−ξ ‖= O(1)},
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bsλ (X) = {x = (xk) |xk ∈ X , (Xn) ∈ mλ (X) , where Xn =
n

∑
k=0

xk},

mλ
A (X) = {x = (xk) |xk ∈ X , ∃ lim

n
Anx = ξ , λn ‖ Anx−ξ ‖= O(1)}.

Remark 5.1. All results of this paper are valid if scalar-valued sequences or sequence sets are replaced by
corresponding X-valued sequences or sequence spaces (see [14], pp. 58–59; [4], p. 139).

Considering Remark 5.1, we can use the results of our paper for increasing the order of approximation of
Fourier expansions and Zr-means of Fourier expansions in Banach spaces. We assume that a total sequence
of mutually orthogonal continuous projections (Tk) (k = 0,1, ...) on X exists, i.e., Tk is a bounded linear
operator of X into itself, Tkx = 0 for all k implies x = 0, and TjTk = δ jkTk. Then we may associate formal
Fourier expansion

x∼∑
k

Tkx

to each x from X . It is known (see [11], pp. 74–75, 85–86) that the sequence of projections (Tk) exists if, for
example, X = C2π is the set of all 2π-periodic functions, which are uniformly continuous and bounded on
R, X = Lp

2π (1≤ p < ∞) is the set of all 2π-periodic functions, Lebesgue integrable to the pth power over
(−π,π) or X = Lp(R) (1≤ p < ∞) is the set of all functions, Lebesgue integrable to the pth power over R.

Let M = (mnk) be defined by (3.3), where s < 0 and s+ t > 0. Then we put

Mnx = T0x+
∞

∑
k=1

[
1− ks

(n+1)s+t

]
Tkx (5.1)

for every x ∈ X if the series in (5.1) are convergent. Using Remark 5.1, we immediately get the following
result from Corollary 3.2.

Corollary 5.1. Let Mn be defined by (5.1) and x0 ∈ X . If the estimation

m < (n+1)α ‖
n

∑
k=0

Tkx0− x0 ‖< K

holds for some numbers m,K > 0, and for 0 < α < s+ t, then

(n+1)s+t ‖Mnx0− x0 ‖= O(1) , (5.2)

i.e., M-means increase the order of approximation of Fourier expansion of x0.

Let M be defined by (3.7), where N is a positive integer and c, β , σ > 0. Then we set

Mnx =
n+N

∑
k=0

[
1− k

(n+1)cn+β+σ

]
Tkx (5.3)

for every x ∈ X . Using Remark 5.1, we immediately get the following result from Proposition 3.2.

Corollary 5.2. Let Mn be defined by (5.3) and x0 ∈ X . If the estimation

m < (n+1)cn ‖
n

∑
k=0

Tkx0− x0 ‖< K

holds for c > 0 and for some numbers m,K > 0, then

(n+1)cn+β ‖Mnx0− x0 ‖= O(1)

for 0 < β ≤ c and σ > 1, i.e., M-means increase the order of approximation of Fourier expansion of x0.
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Now we write

Zr
nx =

n

∑
k=0

[
1−

(
k

n+1

)r ]
Tkx (5.4)

for Zygmund method Zr and for every x ∈ X . Using Remark 5.1, Proposition 4.1, and Theorem 4.2, we
immediately get

Corollary 5.3. Let Mn and Zr
n be defined by (5.1) and (5.4), respectively, and x0 ∈ X. If the estimation

m < (n+1)α ‖ Zr
nx0− x0 ‖< K

holds for α ∈ (1, r) and for some numbers m,K > 0, then estimation (5.2) for s+t > α and s < 0 also holds,
i.e., M-means increase the order of approximation of Zr-means of x0.

Note that several comparison theorems for the orders of approximation of Fourier expansions, similar to
Corollary 5.3, were proved in [14,18,19]. However, in all above-mentioned results the order of approximation
of Fourier expansions by M-means was not higher than the corresponding order of approximation by
Zygmund means.
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Koonduvuse kiirendamisest regulaarsete maatriksmenetlustega

Ants Aasma

On uuritud jadade ja ridade koonduvuse kiirendamist ning parandamist mittekolmnurksete regulaarsete
maatriksmenetlustega. Varem on tõestatud, et kolmnurkne regulaarne maatriksmenetlus ei saa parandada
ei koonduvust, λ -koonduvust (λ on monotoonselt kasvav positiivne tõkestamata jada) ega ka λ -tõkestatust.
Nüüd on näidatud, et ka mittekolmnurkse maatriksiga defineeritud regulaarne jada-jada-teisendus ei saa
parandada koonduvust, kuid võib siiski parandada λ -tõkestatust. Veel on näidatud, et leidub mittekolm-
nurkse maatriksiga defineeritud regulaarne rida-jada-teisendus, mis parandab koonduvust või Aλ -tõkesta-
tust, kus A on regulaarne rida-jada-teisendusega antud Zygmundi menetlus. Veel on uuritud koonduvuse
kiirendamist teatavatel koonduvate ridade ja jadade alamhulkadel.


