Oil Shale, 2007, Vol. 24, No. 2, pp. 117–133

 

FORMATION OF VOLATILE ORGANIC COMPOUNDS AT THERMOOXIDATION OF SOLID FOSSIL FUELS

(full text in pdf format)

 

T. KALJUVEE, E. EDRO, R. KUUSIK

 

 

Thermoanalytical technique combined with FTIR equipment was used for comparative estimation of thermal behavior of samples with simultaneous identification of gaseous compounds formed and emitted at thermooxidation of solid fossil fuels (oil shale, semicoke, coal) from different deposits (Estonia, Israel, Jordan, Morocco, Bulgaria, Russia). The experiments were carried out under dynamic heating conditions up to 900 °C at heating rates of 5, 10 or 50 K min–1 in a stream of dry air. In addition to CO2 and H2O as major gases evolved, a number of individual volatile species like CO, SO2, COS, methane, ethane, ethylene, formaldehyde, acetaldehyde, formic acid, methanol, chlorobenzene, etc. were determined. Notable differences in the composition of gaseous compounds evolved as well as differences in the absorbance of individual species in FTIR spectra depending on the origin of fuel and on the heating rate used were determined.

 

REFERENCES

1.     Lahtvee, V. Energy and Environment. Estonian Energy 1999. Ministry of Economic Affairs. Tallinn, 2000. P. 5259.

2.     The state of Estonia’s environment on the threshold of the 21st century. Information and Techno­logical Center of the Ministry of Environment. Tallinn, 2000. 96 pp [in Estonian].

3.     Ots, A. Formation of air-polluting compounds while burning oil shale // Oil Shale. 1992. Vol. 9, No. 1. P. 63–75.

4.     Carangelo, R. M., Solomon, P. R., Gerson, D. J. Application of TG-FT-i. r. to study hydrocarbon structure and kinetics // Fuel. 1987. Vol. 66, No. 7. P. 960–967.

5.     Zanier, A. Thermogravimetric Fourier transform infrared spectroscopy of hydro­carbon fuel residues // J. Therm. Anal. Cal. 1999. Vol. 56, No. 3. P. 1389–1396.
doi:10.1023/A:1010170810085

6.     Strezov, V., Lucas, J. A., Evans, T. J., Strezov, L. Effect of heating rate on the thermal properties and devolatilisation of coal // J. Therm. Anal. Cal. 2004. Vol. 78, No. 2. P. 385–397.
doi:10.1023/B:JTAN.0000046105.01273.61

7.     Bassilakis, R., Carangelo, R. M., Wójtowiecz, M. A. TG-FTIR analysis of bio­mass pyrolysis // Fuel. 2001. Vol. 80, No. 12. P. 1765–1786.

8.     Pitkänen, I., Huttunen, J., Halttunen, H., Vesterinen, R. Evolved gas analysis of some solid fuels by TG-FTIR // J. Therm. Anal. Cal. 1999. Vol. 56, No. 3. P. 1253–1259.

9.     Lu, R., Purushotama, S., Yang, X., Hyatt, J., Pan, W-P., Riley, J. T., Lloyd, W. G. TG/FTIR/MS study of organic compounds evolved during the co-firing of coal and refuse-derived fuels // Fuel Process. Technol. 1999. Vol. 59, No. 1. P. 35–50.
doi:10.1016/S0378-3820(99)00011-9

10.  Kaljuvee, T., Pelt, J., Radin, M. TG-FTIR study of gaseous compounds evolved at thermooxidation of oil shale // J. Therm. Anal. Cal. 2004. Vol. 78, No. 2. P. 399–414.
doi:10.1023/B:JTAN.0000046106.53195.26

11.  Kundel, H. A., Petaja, L. I. Thermogravimetric analysis of oil shale in air atmosphere // Oil Shale. 1985. Vol. 2, No. 4. P. 273–378 [in Russian].

12.  Kök, M. V. Evaluation of Turkish oil shales – thermal analysis approach // Oil Shale. 2001. Vol. 18, No. 2. P. 131–138.

13.  Cebulak, S., Gawæda, A., Langier-Kuýniarowa, A. Oxyreactive thermal analysis of dispersed organic matter, kerogen and carbonization products – a tool for investigation of the heated rock masses // J. Therm. Anal. Cal. 1999. Vol. 56, No. 2. P. 917–924.
doi:10.1023/A:1010147315595

14.  Paulik, F.,Paulik, J., Arnold, M. Kinetics and mechanism of the decomposition of pyrite under conventional and quasi-isothermal – quasi-isobaric thermo­analytical conditions // J. Therm. Anal. Cal. 1982. Vol. 25, No. 2. P. 313–325.
doi:10.1007/BF01912956

15.  Jorgensen, F. R. A., Moyle, F. J. Phases formed during the thermal analysis of pyrite in air // J. Therm. Anal. 1982. Vol. 25, No. 2. P. 473–485.
doi:10.1007/BF01912973

16.  Pelovski, Y., Petkova, V. Investigation on thermal decomposition of pyrite. Part I // J. Therm. Anal. Cal. 1999. Vol. 56, No. 1. P. 95–99.
doi:10.1023/A:1010135425009

17.  Lille, Ü. Current views on the origin of Estonian kukersite kerogen // Oil Shale. 2002. Vol. 19, No. 1. P. 3–18.

18.  Kök, M. V., Pamir, M. R. ASTM kinetics of oil shale // J. Therm. Anal. Cal. 1998. Vol. 53, P. 567–575.
doi:10.1023/A:1010109929197

19.  Kaljuvee, T., Kuusik, R. Emission of sulphur dioxide during thermal treatment of fossil fuels // J. Therm. Anal. Cal. 1999. Vol. 56, P, No. 3. 12431251.

20.  Kaljuvee, T., Kuusik, R., Veiderma, M. Emission of sulphur dioxide by thermo­oxidation of Estonian oil shale and coal // Proc. Estonian Acad. Sci. Engng. 1998. Vol. 4, No. 3. P. 199–1208.

21.  Kaljuvee, T., Kuusik, R., Radin, M., Bender, V. Carbon dioxide binding in the heterogeneous systems formed at combustion of oil shale. 4. Reactivity of ashes towards acid gases in the system fly ash-flue gases // Oil Shale. 2004. Vol. 21, No. 4. P. 13–26.

22.  Xie, W., Liu, K., Pan, W-P., Riley, J. T. Interaction between emissions of SO2 and HCl in fluidized bed combustors // Fuel. 1999. Vol. 78, No. 12. P. 1425–1436.

23.  Liu, K., Pan, W.-P., Riley, J. T. A study of chlorine behavior in a simulated fluidized bed combustion system // Fuel. 2000. Vol. 79, No. 9. P. 1115–1124.

24.  Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers // Oil Shale. 2005. Vol. 22, No. 4 Special. P. 407–420.

25.  Partanen, J., Backman, P., Backman, R., Hupa, M. Absorption of HCl by lime­stone in hot flue gases. Part III: simultaneous absorption with SO2 // Fuel. 2005. Vol. 84, No. 12–13. P. 1685–1694.

26.  Ots, A., Pihu, T., Arro, H. Influence of sulphur dioxide and hydrogen chloride on properties of oil shale ash // Oil Shale. 2005. Vol. 22, No. 4 Special. P. 435–444.