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The dependency of electrical network load on outdoor temperature is 
examined in this paper. The mathematical model that considers the level of 
temperature dependency, inertia and non-linearity of the temperature 
influence, and changes with time is described.  

Introduction  

The dependency on outdoor temperature is one of the most important 
characteristics of load. First of all, this dependency is expressed there, where 
electrical heating or different air conditioning devices are used. For example, 
in Lapland (Finland), where electrical heating is of great importance and 
deviations in outdoor temperature are large, the load increase caused by 
outdoor temperature may be up to 100% compared to the load at normal 
temperature. Usually, however, the temperature dependency of load is 
smaller, especially in the case of industrial load. 

The dependency of electrical network load on temperature and other 
weather factors is widely been covered in different papers. In [1] a 
regression-based adaptive weather-sensitive short-term load forecasting 
approach has been presented. Proposed algorithm is robust and not very 
sensitive to weather forecast accuracy considering only the data having a 
great influence on consumption, e.g. only minimal, maximal and average 
daily temperatures and average daily wind speed are used. Also the extent 
and inertia of the temperature influence are considered. Weather impact on 
load diversity is covered in [2]. To relate critical points in the load curve to 
weather factors, a multiple regression was applied. It is proposed that daily 
maximum temperatures are the dominant weather factors, followed by 
humidity at times of maximum temperature, daily minimum temperature, 
wind speed and hours of sunshine. When considering the temperature, the 
effect of the previous day temperature is important [3]. It is indicated that 
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temperature of the previous day is more important than the peak day tem-
perature. Physically that temperature represents the heat stored in buildings 
due to the previous day temperature. 

Besides outdoor temperature, electrical network load depends on other 
meteorological factors such as sun radiation (cloudiness), wind speed, 
humidity, etc. To avoid unreasonable complexity of the model and possible 
estimation difficulties, we consider only the basic factor – outdoor tempera-
ture. It must be emphasised that for practicality, only factors that are treated 
(including forecasted) by meteorological services in a quantitative way should 
be considered. Principally other weather factors can be considered through 
transformed value of temperature, i.e. through effective temperature. Of 
course, this value must be also treated by meteorological services. 

The mathematical model of the temperature dependency describes the 
increase in load when outdoor temperature changes. In addition to the level 
of load deviations due to the temperature, the delay of the temperature 
influence (inertia), changes in time and non-linearity must be considered. As 
known, the delay of about 24 hours is characteristic to the temperature 
influence. Yearly changes must be considered, since the temperature 
dependency in summer differs remarkably from that in winter. The vari-
ability of weekly and daily temperature dependencies must also be con-
sidered. A non-linearity phenomenon occurs when, in case of certain 
temperature values, the character of temperature dependency changes. For 
example, in summertime, when temperature dependency in northern lands is 
mostly missing, load increase can be recognised if temperature falls below 
14 °C or rises above 25 °C. In wintertime, the speed of load increase may 
decrease if temperature falls below –25 °C. These phenomena can be 
explained by using additional heating or cooling equipment in summertime 
and achieving the maximum output of heating equipment or finishing 
outdoor works in wintertime.  

The structure of the model is the same for all loads. In order to make the 
model to correspond to a certain load, model parameters must be estimated 
with that load data. Despite the modest number of parameters, some 
difficulties may arise when using formal estimation methods (e.g. least-
square method). For example, in the summer period, when the temperature 
influence is small, bad differentiation between the delay of the temperature 
influence and the level of the temperature deviation causes problems. 
Furthermore, it is a problem to estimate the parameters that are associated 
with non-linearity. The fundamental problem during the observable period is 
the unilaterality of the weather type. Thus, for example, many years with 
warm winter, cold summer etc. may occur. The minimal period for the 
change of weather types from the meteorological point of view is 30 years. 
In the abovementioned range, the load data is either missing or is not reliable 
enough due to the changes of the load character. Therefore, it is necessary to 
estimate model parameters in two phases. In the first phase, during load 
research, larger amounts of loads are handled. As a result, the temperature 
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dependency models are identified – the type cases are found and some of the 
model parameters are fixed. In the second, model estimation phase, the rest 
of parameters are estimated, basing on the observable data of single loads. 

Mathematical model of the load 

The mathematical model describing changes of load (active power, reactive 
power, or current) consists of three basic components [4]: 

 

P(t) = E(t) + G(t) + T(t) 
 

where  E(t) is mathematical expectation of the load;  
G(t) is temperature-sensitive part of the load;  
T(t) is stochastic component of the load. 

Mathematical expectation E(t) describes regular changes of a load, such 
as general trend and seasonal, weekly, and daily periodicity. Mathematical 
expectation is principally non-stochastic and corresponds to the normal 
temperature. 

The temperature-sensitive part of a load G(t) describes load deviations 
caused by deviations of outdoor temperature from the normal temperature. 
The normal temperature (mathematical expectation of the temperature) is the 
average outdoor temperature of the last 30 years on any given hour of the 
year. If the real outdoor temperature corresponds to the normal temperature 
(considering delay), the value of the temperature-sensitive part of the load is 
zero. To compare temperature dependencies of different loads, the compo-
nent G(t) is normalized  

 

G(t) = R(t)γ(t), 
 

where  R(t) is rate of temperature dependency of the load; 
 γ(t) is normalized component of temperature dependency. 

The stochastic component T(t) describes stochastic deviations of load. 
Due to the autocorrelation, the deviations are stochastically dependent on 
each other. It is possible to describe the stochastic component of the load by 
expected deviation ( )tζ , which represents the conditional mathematical 
expectation of the stochastic component and normally distributed non-
correlated residual deviation (white noise) ( )tξ . In addition, it is necessary 
to consider peak deviations of the load by the component ( )tπ , which 
describes large positive or negative deviations that do not correspond to the 
normal distribution. It is practical to normalize the stochastic component. 
The proper rate is the standard deviation of the load S(t). The result is 

 

[ ]( ) ( ) ( ) ( ) ( )Θ t S t t t tζ ξ π= + + . 
 

Let us observe the component of temperature dependency. Here, the rate of 
temperature dependency R(t) makes the relative components of temperature 
dependency ( )tγ  comparable for different loads. It enables us, for example, to 
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estimate the component ( )tγ  according to the load class simultaneously for 
many loads. The rate R(t) also determines the level of the temperature 
dependency for every single load and supports the consideration of its 
temporal changes. It is appropriate to take the rate of temperature dependency 
R(t) as temperature sensitivity of load. Temperature sensitivity represents the 
load increase when the temperature rises by 1 °C. Temperature sensitivity has 
a variable nature at seasonal, daily and hourly levels. As an example, the 
changes of temperature sensitivity at weekly and hourly levels are presented in 
Fig. 1 and Fig. 2. Temperature sensitivity, the unit of which is MW/ºC is, in 
this case, negative – the rise of the temperature causes a fall of load and vice 
versa. The effect of the temperature is highest in winter. The peak in daily 
temperature sensitivity at 23.00 is apparently caused by switching on heating 
devices, due to the change in tariffs at that time.  

Actually, the normalized component of temperature dependency ( )tγ  
represents temperature deviation, unit °C. In the first approximation, 
temperature deviation may be found in relation to the normal temperature 

[ ]( ) ( ) E ( )T t T t T t∆ = − , and thus ( ) ( )t T tγ = ∆ . In practice, more precise 
presentation of the component ( )tγ  is necessary. It should enable more 
detailed description of the temperature dependency of the load, first of all 
considering the delay of the temperature influence (inertia). To present the 
normalized component of temperature dependency, it is appropriate to apply 
the time series ARIMA model (Integrated Autoregressive � Moving Average 
Model), which is also called Box-Jenkins model [5], as follows: 
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Fig. 1. Temperature sensitivity of the load, weekly values. 
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Fig. 2. Temperature sensitivity of the load, hourly values. 

 
 

Here the operators ( )T BΦ  and ( )T BΨ  are the polynomials of the shift 
operator B 1( )t tBx x −= . If operators ( )T BΦ  and ( )T BΨ  are presented in the 
form of 

 

( ) 1T B BϕΦ = − , ( ) m
T B BψΨ = , 

 

where ϕ , ψ  and m are parameters, then the component ( )tγ  corresponds to 
transfer function, shown in Fig. 3 with parameters  
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Fig. 3. Transfer function of temperature dependency. 
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According to this transfer function, the influence of temperature change 
on the load starts after 0H  hours, where H is time constant of temperature 
dependency. For example, if 0 5H =  and 10H = , temperature change will 
affect the load fully after about 0 2 25H H+ =  hours (i.e. on the next day). 

In addition to level and inertia, one must also consider changes of tem-
perature dependency in time and non-linearity. Time responds are taken into 
account by considering that model parameters change in time. It is essential 
to consider seasonal variability, because the influence of temperature in 
summer differs significantly from that in winter. If necessary, changes of 
weekly and daily temperature dependencies may also be taken into account. 
A non-linearity phenomenon occurs when, in the case of certain temperature 
values, the characteristics of temperature dependency change. Such pheno-
mena are in conjunction with temperature deviation from a certain value 
instead of mathematical expectation of temperature. In the model, non-
linearity is considered by adding the so-called marginal components, which 
will be activated if temperature falls below or reaches above the threshold 
values 1T  or 2T . According to that, the component of temperature 
dependency ( )tγ  consists of three parts 

 

0 1 2t t t tγ γ γ γ= + + , 
 

where 
 

0 0 0 0( ) ( )( )T t T t tB B T TγΦ = Ψ −  
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Here [ ]0 Et tT T=  is mathematical expectation of the temperature.  
If the delay in the case of marginal components is of the same level as the 

main components, the temperature dependency model is  
 

1 2
0 0 1 1 2 2( ) ( ) ( )

t t

m m m
t t t t T t T tT T T T

B B T T B T T B T Tγ ϕ γ ψ ψ ψ
< >

= + − + − + − . 
 

Figures 4 and 5 are the examples of temperature dependency of the load 
with weekly and daily values [6]. For comparison, temperature and its 
mathematical expectation is also presented (scaled on the right axis). Here 
the load long-term forecast ( ) ( ) ( )E t R t tγ+  is achieved by adding tempera-
ture dependency to mathematical expectation. As temperature dependency is 
calculated basing on real temperature data, the expression “forecast” is 
somewhat conditional.  
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Fig. 4. Load real value (1), mathematical expectation (2), long-term forecast (3), 

temperature value (4), and normal temperature (5) (weekly values). 
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Fig. 5. Load real value (1), mathematical expectation (2), long-term forecast (3), 

temperature value (4), and normal temperature (5) (daily values). 
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Depending on the needed accuracy of modelling, other details of load 
temperature dependency may be considered. For example, load may not 
decrease in an ordinary way after a long, cold winter period (a week or 
more) when temperature returns to the normal level. A problem is how to 
present load temperature dependency of accumulative electrical heating. In 
that case temperature dependency is related not so much to the power of the 
heating system as to the duration of the turn-on time. 

Identification and estimation of the model 

The components of the mathematical model are estimated using the hourly 
load data, which have been fixed at a certain data density, once or more 
times an hour. Yearly hourly data and temperature data of the load are 
needed to implement the estimation process. There should be considerably 
more data available for several years (5–10 years), in order to obtain reliable 
results. However, in a longer period the load characteristics may change, 
which prevents achieving more accurate results. Bad differentiation between 
mathematical expectation and temperature dependency of the load is also a 
problem in the estimation process. Sometimes it is difficult to determine 
whether load deviations mean the change of load character (mathematical 
expectation) or  it occurs due to the influence of temperature. 

Temperature sensitivity R(t) is estimated together with mathematical 
expectation E(t). Mathematical expectation of the load principally cor-
responds to the normal temperature. Therefore, the estimation of the 
mathematical expectation is based on the data normalized in relation to the 
temperature 

 

( ) ( ) ( ) ( )P t P t R t tγ′ = − . 
 

In the estimation process of temperature sensitivity, load deviation in 
relation to mathematical expectation is used 

 

( ) ( ) ( )P t P t E t∆ = − . 
 

As the temperature dependency model is initially missing, an iteration 
process must be arranged where mathematical expectation and temperature 
sensitivity are adjusted after the evaluation of temperature dependency. 
Practically, 2–4 iterations are needed. The result is still not always reliable. 
Bad differentiation between mathematical expectation and temperature 
dependency arises. For example, when the observable time period is two 
years and both winters are soft, it is statistically difficult to determine the 
load level in a normal or a cold winter. 

The model of the component ( )tγ  consists of seven parameters 
0 1 2 1, , , , ,m Tϕ ψ ψ ψ  and 2T . The estimation is aggravated because of para-

meters changing with time. The nature of the marginal components must 
also be cleared. Bad differentiation between different components of the 
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model is also a problem. Thus, the parameters representing the delay of the 
temperature influence ,m ϕ  also affect the level of the temperature 
dependency. It is difficult to determine the relation of the main components 
of the model and marginal components basing on threshold temperatures 1T  
and 2T . 

The parameters of the component ( )tγ  are estimated by characteristic time 
interval to consider temporal changes. It is necessary to divide the year at least 
into four periods (spring, summer, autumn and winter). For more precise 
modelling, it is possible to observe separately three periods of the week 
(workday, Saturday and Sunday) and four periods of the day (morning, hours 
in the middle of the day, the first hours of the night, the rest of the night). 

The model parameters of temperature dependency are estimated in two 
phases. Firstly, the nature of the load temperature dependency is investi-
gated, and the structure of the model (characteristic time periods, threshold 
temperatures of the marginal components etc.) and compatible loads are 
determined. In the second phase, applying the formal methods, the model 
parameters are estimated conclusively for every load. To enhance the 
reliability of the model, the component ( )tγ  may be estimated by load 
classes (temperature sensitivity R(t) is always adequate to the load). Similar 
response to temperature deviations is one of the bases for load classification. 

The indication curves, functions of the residual of the normalized 
deviation of load dependency on temperature ( ) f( )t Γθ∆ = , can be used as 
one instrument to research the temperature dependency. The residual is 
expressed as  

 

( ) ( )( ) ( )
( )

P t E tt t
R t

θ γ−∆ = − , 

 

where temperature deviation ( )tγ  is calculated on given model parameters. 
The residual value does not depend on temperature (the indication curve is 
practically horizontal) if the model parameters are appropriate to given 
conditions.  

Figures 6 and 7 give examples of indication curves in the winter period 
for loads, which belong to the same class (summarized load of the regional 
electrical network). At first temperature dependency is not considered. The 
situation in the second case corresponds to the temperature dependency 
model with parameters m = 4, 0,89ϕ =  (H0 = 4 and H = 10 hours), 

0 0.128ψ = , 1 0.122Tψ = − , 2 0.017Tψ = , T1 = –25 and T2 = 0. The marginal 
components of the model indicate that when the temperature goes below –
25 °C, the load increase will decelerate and, respectively, it will accelerate 
when temperature rises above 0 °C. 

Basing on the normal temperature, which in weather stations is mostly 
found as 30-year mean values for every hour, it is necessary to model the 
mathematical expectation of the temperature. The estimation of the 
mathematical expectation means the approximation of the normal tem-
perature in a way appropriate to the model. 
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Fig. 6. Preliminary indication curves of the load. 
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Fig. 7. Indication curves when considering temperature dependency. 

Conclusions 

In the load monitoring process of the electrical network, it is essential to 
consider the influence of outdoor temperature on the load. Load deviations 
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caused by temperature may be considerable in conditions where electrical 
heating or air conditioning devices are used. The mathematical model 
considers the extent of load deviations caused by temperature, and also the 
delay of the temperature influence, non-linearity and temporal changes. 

The structure of the mathematical model is the same for all loads. During 
estimation of the model parameters, problems occur which are associated 
with slow changes in weather conditions, low volume of initial data, and bad 
determinancy of the model components. In order to obtain reliable results, 
the models are initially identified – typical cases of temperature dependency 
of the load are determined and some of the model parameters are fixed. The 
final estimation of the model takes place using the methods of computational 
mathematics depending on the level of the initial data and required accuracy 
of the model. 

First and foremost, the temperature dependency model may be used for 
calculating the temperature influence in the load analysis and short-term 
forecast processes, when the real or meteorologically forecasted values of 
temperature are known. In long-term forecasting of the load the temperature 
values may be simulated. The temperatures measured earlier in a situation 
characteristic of the present case (cold winter etc.) may be used for the 
simulation purposes. The deviation from the normal temperature may also be 
given, and the corresponding values of load deviation may be found.  
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