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Abstract. Linear dynamic systems with output, evolving on the space R∞ of infinite
sequences, are studied. They are described by infinite systems of ∆-differential linear equations
with row-finite matrices, for which time belongs to an arbitrary time scale. Such systems
generalize discrete-time and continuous-time row-finite systems on R∞, studied earlier.
Necessary and sufficient conditions on observability of such systems are given. Formal
polynomial series on time scales are introduced.
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1. INTRODUCTION

The theory of dynamical systems on time scales unifies theories of continuous-
time and discrete-time systems. It also allows considering a dynamical system
with time, which is partly continuous and partly discrete. Observability of finite-
dimensional, stationary, linear systems on time scales was studied in [1]. It was
shown that the standard Kalman criterion of observability holds for systems on an
arbitrary time scale. We prove here a similar result for a class of infinite systems
of linear differential equations with output. The systems are described by infinite
matrices whose rows have only finitely many nonzero elements and the state space
consists of all infinite sequences. In [2] we studied observability of discrete-time
systems of this type and proved an extension of the Kalman criterion to infinite
systems. As its consequence the following characterization of observability was
derived: the system is observable if and only if every state variable can be expressed
as a finite linear combination of the output and its time-shifts. In [3] we showed
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that the same holds for continuous-time infinite systems, with time-shifts replaced
by time-derivatives. However, in that case, to have existence and uniqueness of
solutions, we were forced to consider formal solutions defined by formal power
series. As we consider here a more general situation of arbitrary time case, the
difficulties that appeared in the continuous-time case must inevitably show up also
in this paper. For this purpose we introduce formal polynomial series on time
scales, formal solutions described by such series, and formal exponential matrices.
Once we obtain the Kalman criterion of observability, we can restate all the results
of [2] and [3], as the time scale becomes no longer essential.

The systems we study here are infinite-dimensional, but they are far from the
mainstream of the infinite-dimensional system theory, which consists mainly of two
areas: systems described by partial differential equations and systems on Banach
or Hilbert spaces (see, e.g., [4]). The space of all real sequences is neither a
Banach space nor a Hilbert space. It has the structure of a Fréchet space, but the
theory of systems on Fréchet spaces is not developed yet. Most of the examples
of infinite-dimensional systems lead to systems on Banach spaces, but the systems
that we study here can also serve as models of certain dynamics. For example, the
infinite extension of a finite-dimensional control system leads to a system whose
state space consists of all infinite sequences. Such a system appears also as an
effect of dicretization of the heat equation. Moreover, during this process we can
obtain systems with time belonging to different time scales. If we discretize all
the variables, we obtain a system with the time scale Z, while discretizing only
the space variables, we end up with the time scale R. The results concerning
observability obtained in this paper coincide in principal with the results obtained
for systems on Banach spaces, but cannot be deduced from them. Moreover, since
we study systems on concrete spaces, we can make the most of the structure of such
systems. For example, the row-finiteness of the matrices that describe the systems
allows for a nice characterization of observability as a possibility of expressing the
state variables as linear combinations of finitely many ∆-derivatives of the output
functions.

2. INFINITE MATRICES

Let K be a nonempty countable set. Consider the countable product RK =∏
k∈K R as the set of all functions K → R. If K = N, then RN is the linear

space of all infinite sequences of real numbers represented by infinite columns
x = (x1, . . . , xi, . . .)T , xi ∈ R, i ∈ N. The space RN with the product topology
(the Tikhonov topology) is metrizable. However, there is no norm for this topology,
so RN is not a Banach space.

Recall that a linear topological space is called a Fréchet space if it is metrizable,
complete and locally convex. Note that RN is a Fréchet space [5].

We have the following:
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Proposition 2.1. [5] A function f : RN → R is linear and continuous iff there is
a finite set S ⊂ N and a set of real numbers {ai}i∈S such that for all x ∈ RN :
f(x) =

∑
i∈S aixi, where xi = x(i).

Let K = N×N. Then each element A ∈ RN×N, A : N×N 3 (i, j) 7→ aij ∈ R,
is called an infinite matrix. We will denote it in the standard way A = (aij)i,j∈N .

By I = (δij)i,j∈N, where δij = 0 for i 6= j, δii = 1, we denote the identity matrix
in RN×N. The set RN×N of all infinite matrices is a linear space over R with the
standard operations.

Now let A = (aij) , B = (bij) be infinite matrices. Then the product
AB = (cik)i,k∈N is well defined if the series cik =

∑
j∈N aijbjk is convergent

for each (i, k) ∈ N× N.

Definition 2.2. We say that A = (aij)i,j∈N is
a) row-finite if for each i ∈ N there is α(i) ∈ N : aij = 0 for j > α(i),
b) column-finite if AT is row-finite,
c) lower-diagonal if aij = 0 for j > i,
d) upper-diagonal if aij = 0 for j < i.

Of course, a lower-diagonal matrix is a particular case of a row-finite matrix.
The identity matrix I is row-finite, column-finite, and lower(upper)-diagonal.

Proposition 2.3.
1. The set of all infinite row-finite matrices forms an algebra over R with a unit –

the identity matrix I .
2. The set of all infinite column-finite matrices forms an algebra overR with a unit.

Remark 2.4. The associativity of multiplication is the most essential property
for row-finite (column-finite) matrices. It does not hold for all infinite matrices,
however.

From Proposition 2.3 we get that if A is a row-finite matrix, then all powers
Ak, k ∈ N ∪ {0}, have the same property. Let us denote by (Ak)ij the element at
the ith row and jth column of matrix Ak. Now we recall the definition of the matrix
exponential of an infinite matrix. It was discussed in [6].

Definition 2.5. [7] Let A = (aij)i∈N,j∈N be an infinite matrix and suppose that
there is r > 0 such that for each i, j ∈ N the power series

∑∞
k=0

tk

k! (A
k)ij has the

radius of convergence greater than or equal to r > 0. Then we define the matrix
etA by (etA)ij =

∑∞
k=0

tk

k! (A
k)ij .

Example 2.6. Let A be the upper-diagonal matrix of the following form:

A =




0 1 0 0 0 . . .
0 0 1 0 0 . . .
0 0 0 1 0 . . .
...

...
...

. . . . . . . . .


 .
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Then the exponential matrix exists and is equal to

etA =




1 t t2

2!
t3

3! . . .

0 1 t t2

2! . . .
0 0 1 t . . .
...

...
. . . . . . . . .


 .

Remark 2.7. If an infinite matrix A is a lower-diagonal matrix, then the exponential
matrix eAt = I + At + A2 t2

2! + · · · is well defined [8].

In Section 4 we shall give the definition of formal exponential matrix on an
arbitrary time scale.

3. CALCULUS ON TIME SCALES

In this section we give a short collection of the most important facts from the
calculus on time scales. For further reading we refer to [9−11].

By a time scale, denoted here byT, we mean a nonempty closed subset ofR. As
the theory of time scale gives the way to unify continuous and discrete analysis, the
standard cases of time scales are the following: T = R, T = Z or T = hZ, h > 0.

For t ∈ T we define the forward jump operator σ and the graininess µ by:
a) σ(t) = inf{s ∈ T : s > t} and σ(supT) = supT if supT < +∞;
b) µ(t) = σ(t)− t .
Moreover, we have the backward operator ρ defined by: ρ(t) = sup{s ∈ T :
s < t} and ρ(inf T) = inf T if inf T > −∞. In the continuous-time case, when
T = R, we have that for all t ∈ R : σ(t) = ρ(t) = t and µ(t) = 0. In the
discrete-time case, for each t ∈ T = Z : σ(t) = t + 1, ρ(t) = t− 1, µ(t) = 1.

Additionally we define the set Tk as: Tk := T\(ρ(supT), supT] if supT < ∞
and Tk = T if supT = ∞.

For a function f : T→ Rwe define the delta derivative of f at t ∈ Tk, denoted
by f∆(t), to be the number, if it exists, with the property that for all ε > 0 there is
a neighbourhood U ⊂ T of t such that for all s ∈ U it holds that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|.

Moreover, we say that the function f is delta differentiable on Tk provided f∆(t)
exists for all t ∈ Tk.

Example 3.1.
1. Let T = R, then f∆(t) = f ′(t) and f is delta differentiable iff it is differentiable

in the ordinary sense.
2. Let T = Z, then f∆(t) = f(t + 1)− f(t) and it always exists.
3. Let T be any time scale, then the delta derivative of t2 is t+σ(t) and (t+σ(t))∆

may not exist.
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A function f : T→ R is called regulated if its right-side limits exist (finite) at
all points t ∈ T with σ(t) = t and its left-side limits exist (finite) at all points
t ∈ T with ρ(t) = t. A regulated function f has a pre-antiderivative, i.e. a
continuous F with F∆ = f on a set D where T\D is countable and does not
contain any points t with σ(t) > t. Then the Cauchy integral can be defined as:∫ b
a f(t)∆t = F (b)− F (a).

Example 3.2.
1. Let T = R, then

∫ b
a f(t)∆t is equal to the usual Riemann integral.

2. Let T = Z, then
∫ b
a f(t)∆t =

∑b−1
t=a f(t).

Let N0 mean the set of natural numbers with zero. For t ∈ R and k ∈ N we
define

t(0) := 1 and t(k) := t(t− 1) · · · (t− k + 1). (3.1)

If t ∈ Z and k ≥ t + 1, k ∈ N, then t(k) = 0.
Let T be a time scale. We use the functions hk : T × T −→ R, k ∈ N ∪ {0},

defined recursively as follows [9,10]:

h0(t, t0) ≡ 1 and hk+1(t, t0) =
∫ t

t0

hk(τ, t0)∆τ. (3.2)

Let h∆
k (t, t0) denote, for each fixed t0, the derivative of hk(t, t0) with respect to t.

Then, for t ∈ Tκ,

h∆
0 (t, t0) ≡ 0 and h∆

k (t, t0) = hk−1(t, t0), k ≥ 1. (3.3)

In the case T = Zwe have that hk(t, t0) = (t−t0)(k)

k! for all t, t0 ∈ Z and k ∈ N.

Moreover, if T = R, then hk(t, t0) = (t−t0)k

k! , and it gives a universal upper bound
in the following way:

Theorem 3.3. [11] Let k ∈ N ∪ {0}. Then for all t ≥ t0 it holds that

0 ≤ hk(t, t0) ≤ (t− t0)k

k!
. (3.4)

4. FORMAL POLYNOMIAL SERIES ON TIME SCALES

Let X be a linear space (over R). Then by XN0 we denote the set of all infinite
sequences of elements from X. Hence XN0 = {a = (ak)k∈N0

: ak ∈ X}.
We define the addition of two sequences by (ak) + (bk) = (ak + bk) and the
multiplication by scalars by α(ak) = (αak), α ∈ R. Then XN0 with these
operations on sequences becomes a linear space over R.

Remark 4.1. If in X we have a metric d, then in the space XN0 we can introduce
a metric defined by ρ(a, b) =

∑∞
k=0

d(ak,bk)
1+d(ak,bk) , where a, b ∈ XN0 .
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In XN0 we can define the shift operator by D(a0, a1, . . .) = (a1, a2, . . .). This
operation is R-linear, i.e. D (αa + βb) = αD(a) + βD(b), for α, β ∈ R and
a, b ∈ XN0 .

A formal power series in a real variable t with coefficients from a linear space X
over R has the form of an infinite sum of monomials:

∑∞
k=0 akt

k, where for every
k ∈ N0, ak ∈ X . Operations like sum, and multiplying by scalars are defined
on series in a similar way as on sequences. Shifting of sequences from XN0 is
better represented as an operation on polynomial series given by

∑∞
k=0 ak

tk

k! , where
a = (a0, a1, . . .) ∈ XN0 . Then the operation of formal differentiation of the series
corresponds to the action of the shift operator on the sequence of coefficients of the
series.

To do the same on an arbitrary time scale T, we use the generalized
polynomials, defined by (3.2), in the definition of formal polynomial series on time
scales.

Definition 4.2. Let T be a time scale and t, t0 ∈ T. Let X be a linear space over
R. By a formal polynomial series (on T, centred at t0) over X we mean a formal
expression

St0
a =

∞∑

k=0

akhk(t, t0), (4.1)

where a = (ak)k∈N0
∈ XN0 . The sequence a is called the corresponding sequence

of St0
a . Two formal polynomial series on the time scale T, at the point t0 ∈ T, are

equal if their corresponding sequences are equal, i.e. St0
a = St0

b ⇐⇒ ∀(k ∈ N0) :
ak = bk. The set of all formal polynomial series (on T, centred at t0) over X are
denoted by X[[t, t0]].

Similarly as sequences from XN0 , the series like (4.1) can be added and
multiplied by scalars in the following way:

∞∑

k=0

akhk(t, t0) +
∞∑

k=0

bkhk(t, t0) =
∞∑

k=0

(ak + bk)hk(t, t0); (4.2)

α

( ∞∑

k=0

akhk(t, t0)

)
=

∞∑

k=0

(αak)hk(t, t0), α ∈ R. (4.3)

Proposition 4.3. The set of all formal polynomial series (on T, centred at t0) over
the linear (metrizable) space X is a linear (metrizable) space (over R) with the
addition and the multiplication by scalars defined by (4.2) and (4.3). 2

Given a formal polynomial series St0
a =

∑∞
k=0 akhk(t, t0), we define its formal

∆-derivative by
(St0

a

)∆ =
∞∑

k=0

ak+1hk(t, t0). (4.4)

352



Hence the formal ∆-derivative of the series St0
a is the new formal polynomial

series (on T, centred at t0) with the shifted corresponding sequence (a1, a2, . . .) ∈
XN0 .

Remark 4.4. If we fix the value of t ∈ T, then the expression St0
a , with a ∈ XN0 ,

becomes the series of elements from the space X . As we do not assume that X
is a metric space, hence, in general, we cannot consider convergence of the series
of elements. But if X is metrizable or if the sum is finite, we can investigate the
convergence.

By Theorem 3.3, we have the following:

Corollary 4.5. Let T be any time scale and let t0 ∈ T. Then the convergence
of the series

∑∞
k=0 ak

(t−t0)k

k! implies the convergence of the series with the same
corresponding sequence

∑∞
k=0 akhk(t, t0) on T.

In particular, whenT = Z, for every t ∈ Z, the series
∑∞

k=0 akhk(t, t0) reduces
to the finite sum

∑t−t0
k=0 akhk(t, t0) =

∑t−t0
k=0 ak

(
t−t0

k

)
. If, additionally, for each

k ∈ N0: ak = ck, c ∈ R, then
∑∞

k=0 ckhk(t, t0) = (1 + c)t−t0 , t ≥ t0.
Let P be the ring of infinite row-finite matrices. Then P [[t, t0]] is the set

of all formal polynomial series (on T, centred at t0) with corresponding matrix
sequences. Let us take X = RN. Then for a ∈ (X)N0 the formal polynomial series
(on T, centred at t0) St0

a has a vector form. So we write

St0
a =

( ∞∑

k=0

(ak)1hk(t, t0), . . . ,
∞∑

k=0

(ak)ihk(t, t0), . . .

)T

or as the family of scalar series: St0
a = {∑∞

k=0(ak)ihk(t, t0)}i∈N .

Definition 4.6. Let P be the ring of infinite row-finite matrices and X = RN.
Then for St0

(A0,A1,...) ∈ P [[t, t0]] and x0 ∈ X we define St0
(A0,A1,...)x0 :=

St0
(A0x0,A1x0,...) =

∑∞
k=0 (Akx0) hk(t, t0) as the formal scale-power series from

X[[t, t0]].

Definition 4.7. Let P be the ring of infinite row-finite matrices. Let A ∈ P. Then
(A0, A, A2, . . .) ∈ PN0 . Then we define the formal matrix exponent of A (at t0) as
the formal polynomial series on T:

E t0
A :=

∞∑

k=0

Akhk(t, t0) (4.5)

and for x0 ∈ RN we write

E t0
A x0 =

∞∑

k=0

(
Akx0

)
hk(t, t0). (4.6)
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As in the expression (4.5) we have values of the functions hk(·, t0), the formal
exponent depends on the time scale. If T = R and A is lower-diagonal, then the
series E t0

A is the matrix of scalar series and this coincides with Definition 2.5.
If T = Z, then (E t0

A )ij =
∑t−t0

k=0

(
t−t0

k

)
Ak = (I + A)t−t0 for fixed t ∈ T.

Hence E t0
A = (I + A)t−t0 and has the same form as in the finite-dimensional case.

Proposition 4.8. Let t, t0 ∈ T. Then
(E t0

A

)∆ = AE t0
A .

Corollary 4.9. Let t, t0 ∈ T. Then
(E t0

A x0

)∆ = AE t0
A x0.

Proof. Let us observe that

(E t0
A x0

)∆

i
=

∞∑

k=0

(Ak+1)ix0hk(t, t0) =
∞∑

k=0

Ai(Akx0)hk(t, t0).

Then, as Ai has only a finite number of elements different from zero, we have the
following:

(E t0
A x0

)∆

i
= Ai

(∑∞
k=0(A

kx0)hk(t, t0)
)
. Hence, for each i ∈ N it

holds that
(E t0

A x0

)∆

i
=

(
AE t0

A x0

)
i
.

5. INFINITE SYSTEMS OF ∆-DIFFERENTIAL EQUATIONS

We consider here linear systems of infinitely many ∆-differential equations of
the form

x∆(t) = Ax(t), (5.1)

where x(t) ∈ RN and A is a row-finite infinite real matrix (Definition 2.2).
Such systems may appear as infinite extensions of finite-dimensional control

systems on time scales (in particular, continuous-time or discrete-time systems) of
the form y∆(t) = Fy(t) + Gu(t), when we extend the state space adding new
variables: u and all its ∆-derivatives u[k], for k ∈ N.

Such systems are also related to infinite-dimensional systems described by
partial differential equations. Let us consider a problem of discretization for such a
system.

Example 5.1. The parabolic equation ∂u
∂t = ∂2u

∂x2 may be discretized with respect

to the space variable x. Let zk(t) = u(t, k), k ∈ Z. If we replace ∂2u(t,x)
∂x2 by

u(t, x + 2) − 2x(t, x + 1) + x(t, x), then the discretized system is given by the
infinite number of differential equations:

żk(t) = zk(t)− 2zk+1(t) + zk+2(t), k ∈ Z.

Observe that the equations are indexed by integers and not natural numbers as
it was presented earlier. This leads to a row-finite matrix whose columns and
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rows are indexed by integers as well. One can also discretize the time variable
replacing żk(t) by zk(t + 1) − zk(t), i.e. by z∆(t), where the ∆-derivative is
taken on the time scale Z. Other time scales can be used for time discretization as
well (for example nonhomogeneous ones). Thus z∆(t) may mean different things,
expressing different ways of discretization.

More examples of systems of differential equations described by infinite
matrices can be found in [7]. Although such systems do not belong to the
mainstream of the infinite-dimensional system theory, they pose interesting
mathematical problems and have many important applications.

Let us consider now the initial value problem on T

x∆(t) = Ax(t), x(t0) = x0 ∈ RN, (5.2)

where A is a row-finite matrix, t ∈ [t0,∞) ∩ T, and x ∈ RN. In the finite-
dimensional case the initial value problem x∆(t) = Ax(t), x(t0) = x0 has the
unique forward solution (for t > t0, where t, t0 ∈ T) even if A is not regressive [10].

If T = N, then (5.2) is a discrete-time and infinite-dimensional initial value
problem. Because Ak, k ∈ N0 is row-finite in case A is row-finite, there is
no difficulty with the existence and uniqueness of the forward solution. The
solution, corresponding to the initial condition x(t0) = x0, is in the following
form: x(t) = (I + A)t−t0x0.

If T = R, the initial value problem (5.2) may have infinitely many smooth
solutions and to get uniqueness we have considered, in [3], formal solutions in the
form of formal power series. Hence, similarly as in the continuous-time case, we
shall use formal expressions for solutions of (5.2).

Proposition 5.2. Let T be any time scale and for t0 ∈ T : x(t0) = x0 ∈ RN. Then
the vector of formal polynomial series (on T, centred at t0) defined by (4.6) is the
unique (formal) solution of the initial value problem (5.2).

Let Λ be the system on T of the following form:

x∆(t) = Ax(t), (5.3)

y(t) = Cx(t), (5.4)

where x(t) ∈ RN and y(t) ∈ RJ , where J = N or J = p < ∞. The matrices A
and C are row-finite. In the case where J = p the matrix C has a finite number
of rows but infinitely many columns. If T = N, then Λ is a discrete-time system
and, as we notice in the above discussion, there exists a unique (forward) solution
of (5.3), and the output trajectory corresponding to the initial condition x(t0) = x0

has just the form y(t) = CAt−t0x0. For any other time scale T we have formal
output Yt0

x0
=

∑∞
k=0 CAkx0hk(t, t0).

The initial condition x(t0) = x0 may be represented as a pair (t0, x0) ∈ T×RN.
Such a pair is called an event.
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Definition 5.3. We say that two events (t0, x1) and (t0, x2) are indistinguishable
by the system Λ if Yt0

x1 = Yt0
x2 . Otherwise, the events (t0, x1) and (t0, x2) are

distinguishable. We say that the system Λ is observable if for any two distinct
points x1, x2 ∈ RN there is t0 ∈ T such that the events (t0, x1), (t0, x2) are
distinguishable.

Proposition 5.4. The events (t0, x1) and (t0, x2) are indistinguishable iff for all
k ∈ N0 : CAkx1 = CAkx2.

Proof. Yt0
x1 = Yt0

x2 ⇔
∑∞

k=0 CAkx1hk(t, t0) =
∑∞

k=0 CAkx2hk(t, t0) ⇔ ∀k ∈
N0 : CAkx1 = CAkx2.

Remark 5.5. If there is t0 ∈ T such that two events (t0, x1), (t0, x2) are
distinguishable, then it means that for all t ∈ T the events (t, x1), (t, x2) are
distinguishable.

Observe that the conditions on observability that were obtained for T = R,
in [3], are the same for any time scaleT. Hence we recall main propositions without
repeating the proofs, which can be found in [2,3].

Let f : N×N0 → N be an isomorphism. Then for each i ∈ N there is only one
pair (k, n) ∈ N×N0 such that i = f(k, n). Now let D = (dij) be an infinite matrix
whose ith row Di is equal to CkA

n, where i = f(k, n). If C has only finitely many
rows, then the matrix D can be written in the following way:

D =




C
CA

...


 .

Let D(x) = Dx,D : RN → RN.
Let ei, i ∈ N be the infinite row with 1 at the ith position and 0 at other

positions.

Proposition 5.6. System Λ is observable iff ∀i ∈ N ∃Si = {k1, . . . , kni} ⊂ N
∃{a1, . . . , ani} ⊂ R : ei = a1Dk1 + · · ·+ aniDkni

.

Remark 5.7. Since the rows of D correspond to derivatives of the output, one can
characterize observability as a possibility of computing every state variable as a
linear combination of finitely many outputs and their derivatives.

If C has finitely many rows, then for all 0 ≤ k < ∞ the rank of the matrix



C
...

CAk




is finite.
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Corollary 5.8. The system Λ (with the matrix C of finitely many rows) is observable
iff ∀i ∈ N ∃ki ∈ N0 :

rank




C
...

CAki


 = rank




C
...

CAki

ei


 .

Proposition 5.9. If Λ is observable, then rankD = ∞.

Example 5.10. Let Λ be the system, on the time scale T = Z, of the form
x∆(t) = Ax(t), y(t) = Cx(t), where A,C are infinite row-finite matrices
and C has finitely many rows. Then the necessary and sufficient condition on
observability is given by Corollary 5.8. The system Λ can be rewritten in the shift
form of the discrete-time system: x(t + 1) = (A + I)x(t), y(t) = C(t). Then
in the condition of observability we should write the matrix (A + I) instead of the
matrix A. But it does not change this condition because for each k ∈ N

rank




C
CA

...
CAk


 = rank




C
C(A + I)

...
C(A + I)k


 .

Remark 5.11. For infinite-dimensional systems observability is usually dual to
approximate controllability, which means that the reachable space is dense. Such
duality was proved for continuous-time systems described by infinite matrices
in [6]. One could try to extend this result to systems on time scales. This would
require, however, developing controllability of such systems.
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Lineaarsete dünaamiliste lõpmatumõõtmeliste süsteemide
klassi jälgitavus ajaskaaladel

Dorota Mozyrska ja Zbigniew Bartosiewicz

On uuritud lineaarseid dünaamilisi süsteeme, mille väljund on defineeritudR∞
lõpmatute jadade ruumis ja mis on esitatud lineaarsete ∆-diferentsiaalvõrrandite
lõpmatumõõtmeliste süsteemidega lõplike ridadega maatriksite abil, kus aeg
kuulub suvalisse ajaskaalasse. Niisugused süsteemid on varem uuritud diskreetaja
ja pideva ajaga R∞ lõplike ridade süsteemide üldistuseks. On leitud selliste
süsteemide jälgitavuse tarvilikud ja piisavad tingimused, milleks on kasutatud
formaalseid polünomiaaljadasid ajaskaaladel.
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