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Abstract. The influence line for deflection of non-prismatic simply supported beams has been 
developed. The methodology primarily comprises the determination of the Green’s function of the 
governing differential equation and extension of the results to typical problems. The method of 
inverse operator along with the orthogonal eigenfunction expansion was employed and the final 
form of the solution is presented in an integral form, which can be solved by either direct methods 
or numerical techniques. An example problem and the closed-form solution for a particular class of 
non-prismatic beams, very often applied in practice, have been presented. 
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1. INTRODUCTION 
 
In civil engineering, there are two design criteria for structural members like 

columns and beams: the strength, and the serviceability, which require the 
internal shear forces, moments and deflections to be understood. The influence 
line for a beam is a graph or a curve, representing the variation of the shear force, 
bending moment, deflection or other parameters due to a unit load traversing 
along the beam axis [1–4]. The governing equation of the influence line can be 
found by applying a unit load at an arbitrary stationary location on the beam, 
such as 0 ,x  and determination of the desired quantity, e.g., deflection, bending 
moment or shear force as a function of the position .x  Also the influence line can 
be used to find the most critical position for a system of loads imposed on the 
beam, generating the extreme value for the quantity of interest. Alternatively, it 
shows where the critical value of the quantity of interest would occur if a unit 
load (or a system of loads) is applied to a beam. In civil engineering, an 
economic design often requires a variable cross-section to be utilized. Non-
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prismatic or non-uniform simply supported beams have wide applications in 
practice, e.g. in long-span bridges and industrial structures with plate-girders and 
hinge connections to support heavy loads. There are several methods in tackling 
with the problem of the deflection of non-prismatic beams [5]. For statically 
determinate prismatic beams, except in particular cases, a closed form solution is 
often available for influence lines [3,4]. However, a closed form solution of the 
influence line for the deflection of non-prismatic beams cannot be always 
obtained. Several methods have been developed to find the influence line or, in 
general, the deflection of non-prismatic beams. For example, the use of the 
energy method or Castigliano’s theorem for the deflection of structural members 
can be mentioned [1,3,4]. 

Over the past decades, many researchers have investigated the problem of 
deflection of non-prismatic beams subjected to different boundary conditions. A 
wide range of methods, including closed-form solutions and numerical 
techniques has been developed: Karabalis and Beskas [6] developed a method 
based on exact stiffness and mass matrices for constant width linear height 
tapers. Eisenberger [7] developed an exact stiffness matrix for some particular 
cases of non-prismatic beam deflection analysis. Ganga Rao and Spyrakos [8] 
proposed a series solution for differential equations with variable properties over 
the domain. They handled the problem by assuming the solution to be expand-
able in terms of the generalized Fourier series and found the undetermined 
coefficients in a system of equations, leading to some mode shape functions. 
Such a technique can be extended to the problem of the deflection of non-
prismatic beams. Static and vibrating behaviour of non-prismatic beams was 
studied by Eisenberger and Reich [9]. They approximated the moment of inertia 
and cross-sectional area of non-prismatic beams with some power series and 
presented their solution in terms of matrix equations. In [10,11] the deflection of 
non-prismatic beams under static loads, based on fundamental solutions of the 
governing differential equation (the fourth-order ODE) under rather general 
boundary conditions was investigated. A closed-form solution for beams with 
variations in both stiffness and moment of inertia was obtained. Al-Gahtani and 
Khan [12] used the boundary integral method (BIM) to find the deflection, shear 
force and moment of non-prismatic beams with general boundary conditions at 
both ends. There are also several analytical and numerical attempts for both static 
and dynamic responses of non-prismatic beams [5,13–15]. 

Applications of mathematical techniques to solve particular differential 
equations have been widely employed in the field of engineering. A very useful 
and versatile concept in mathematics, the Green’s function, has been given a 
considerable attention in the past decades for a wide range of boundary value 
problems. Once the Green’s function is found, the deflection or internal forces 
can be easily computed. As an example, Mehri et al. [16] derived the Green’s 
function for dynamic analysis of beams under moving loads. Deflection of non-
prismatic beams can be analysed by different methods and the associated Green’s 
function can be obtained by several techniques. In this paper, the method of 
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operator in conjunction with the Fourier series expansion is employed to find the 
Green’s function of the governing differential equation for simply supported non-
prismatic beams. The method is first described in few details and then applied to 
the problem under study. 

 
 

2. THE  METHOD  OF  OPERATOR 
 
As stated before, the method of operator is a classical and powerful technique 

in dealing with differential equations of all types (ordinary or partial). This 
method is applicable to linear operators. The most useful application of this 
method is to non-homogeneous problems. Once the governing differential 
equation has been constituted, the method of operator seeks to find the inverse 
operator of the governing differential equation [17]. It is worth mentioning that 
while this method is best fitted to partial differential equations, this research uses 
the method of operator for ordinary differential equations. Given below is a short 
review of the essence of the method of operator. 

Let’s suppose that D  is a linear differential operator acting upon an arbitrary 
function, ,u  defined in some functional space, resulting in a non-homogeneous 
function, ( ),f x  as follows: 

 

( ).Du f x=                                                   (1) 
 

Depending on the physics of the problem and on the degree of the differential 
operator, the governing differential equation may involve some boundary 
conditions. The main strategy of the method of operator is to find the inverse 
operator of the primary differential problem, i.e. 1.D−  Once 1D−  has been found, 
it can be applied to both sides of the problem. Since the original operator, ,D  is a 
differential operator, the inverse operator, 1,D−  should be an integral operator. 
Therefore, the inverse operator is expected to take the following form [17]: 

 
1

0 0( , )d ,K D g x x x−= = ∫                                      (2) 
 

where 0( , )g x x  is the kernel of the integral transform, .K  The inverse operator is 
assumed to possess the property 1 1 ,D D DD I− −= =  where I  is the identity 
operator. The main differential equation can be operated upon by this latter 
transformation. If it is applied to both sides of the governing differential 
equation, it yields 

 
1

0 0 0( ) ( , ) ( )d .KDu Kf x D Du g x x f x x−= ⇒ = ∫                     (3) 
 

It can be further simplified to result in the following equation: 
 

0 0 0 0( ) ( , )( )d ( , ) d .u x g x x Du x g x x Du x= =∫ ∫                      (4) 
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Note that the associative law has been applied to the last expression. For 
commutable operators, the order of the differential and integral operators is 
interchangeable and hence: 
 

0 0( ) ( , ) d .u x D g x x u x= ∫                                       (5) 
 

This expression is traditionally recast in the following form and 0( , )g x x  
would be the associated Green’s function 

 

0 0 0( ) ( , ) ( )d .u x G x x u x x= ∫                                      (6) 
 

In this equation, 0( , )G x x  is 0( , ).Dg x x  
Of particular importance is the inverse operator for a general differential 

operator. If the last expression is to be used for an arbitrarily chosen function, 
( ),u x  the right integral must possess the property that it becomes zero when x  is 

not equal to 0x  and it becomes ( )u x  when 0.x x=  The celebrated contribution of 
Dirac [18] ensures that this is always the case. It has been proved that the inverse 
operator is the solution of the related equation of the following form, in which 
the non-homogeneous term has been substituted by the Dirac’s delta func-
tion [17]: 
 

0 0 0( , ) ( , ) ( ),G x x Dg x x x xδ= = −                                  (7) 
 

where 
 

0
0

, ,
( )

0, otherwise.
x x

x xδ
∞ =

− = 


                                  (8) 

 

It should be noted that the Dirac’s delta function, because of its rather 
complex nature, is formally described in terms of the derivative of the Heaviside 
unit step function [19]: 
 

0
0

0

d ( )( ) ,
d

H x xx x
x

δ −
− =                                        (9) 

 

where the Heaviside unit step function, 0( ),H x x−  is defined as: 
 

0
0

0

1, ,
( )

0, .
x x

H x x
x x

>
− =  <

                                    (10) 

 

Diagrams of the Dirac’s delta function and Heaviside unit step function are 
schematically shown in Fig. 1. 

Therefore, once the Green’s function has been found, solution of the 
differential equation subject to an arbitrary non-homogeneous term, ( ),f x  can be 
found as follows: 

 

0 0 0 0 0( ) ( , )( )d ( , ) ( )d .u x g x x Du x g x x f x x= =∫ ∫                  (11) 
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  (a)      (b) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Graphical representation of the Dirac’s delta function (a) and Heaviside unit step 
function (b). 

 
 
Thus, the problem of finding a particular solution for a given boundary value 

problem, expressed as an ordinary differential equation, will be reduced to 
finding the associated Green’s function. The remaining part of this study is 
devoted to the development of a procedure based on the method of operator to 
find the inverse operator for the governing differential equation of the deflection 
of non-prismatic beams. 

 
 
3. GOVERNING  DIFFERENTIAL  EQUATION  AND  SOLUTION  

TECHNIQUE 
 
The method of operator is employed here to find the inverse operator of the 

problem under study. The governing differential equation, i.e. the deflection of a 
non-prismatic Bernoulli–Euler’s beam of finite length has the following general 
form [2,10,11]: 

 

2 2

2 2
d d ( )( ) ( ),

d d
u xEI x f x

x x
 

= 
 

                               (12) 

 

where ( )u x  is the deflection (out of plane displacement) of the beam, ( )f x  is 
the applied distributed or concentrated loads on the beam, E  is the elasticity 
coefficient of the material and ( )I x  is the moment of inertia, variable along the 
longitudinal axis of the beam. 

It should be noted that, in general, E  can also be variable along the beam [10]. 
But, for the sake of convenience, we drop this assumption since it would have no 
effect on the developed solution in its general form and it is not the case in most 
of practical problems. This equation along with certain boundary conditions can 
describe the deflection of all types of finite beams. In particular, in many civil 
engineering structures like bridge elements, the simply-supported beams are 
widely confronted and hence, they are in the focus of the current study. This 
assumption can be dropped and/or replaced with more general boundary 

x0 x 

δ(x-x0)   H(x-x0) 

x0 x 

 

1 
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conditions for all types of beams (for example, as the one presented in [12]. 
Assuming such special boundary conditions enables this method to be established 
based on well-known elementary functions. Although for general boundary 
conditions the presented approach holds, it requires further study to find thus 
obtained generalized Fourier series. These functions may be also very difficult to 
be expressed in terms of elementary functions. The corresponding boundary 
conditions require no deflection and no moment in either end of a beam of length 

,L  i.e. 
 

(0) ( ) (0) ( ) 0.M M L u u L= = = =                              (13) 
 

Once the deflection profile was found, it is an easy task to differentiate the 
obtained function to find the bending moment and shear force diagrams [3]. For 
instance, the moment distribution, ( ),M x  can be expressed by the following 
equation, which is required for further development of this approach: 

 
2

2
d( ) ( ).
d

uEI x M x
x

=                                           (14) 

 

The governing differential equation can be rewritten in the following form, 
while the operator D  represents the twice derivative with respect to :x  

 

( ( ) ) ( ).D EI x Du f x=                                         (15) 
 

Now, the problem is reduced to find the inverse operator 1.D−  Following the 
method described in [17,20], it is required to solve the following differential 
equation, by making use of the Dirac’s delta function: 

 

0( ( ) ) ( ).D EI x Du x xδ= −                                      (16) 
 

The boundary conditions and the reduced problem to find 1D−  are shown in 
Fig. 2. 

This reduced problem still requires some further mathematical manipulations. 
Since the inner parenthesis represents the bending moment distribution along the 
beam, the corresponding differential equation can be further reduced as follows: 

 

0( ( )) ( ).D M x x xδ= −                                            (17) 
 

 
 

(a)   (b)            (c) 
 

 
Fig. 2. The problem under study (a, b) and the reduced general problem (c). 
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Therefore 
 

2

02
d ( ) ( ).

d
M x x x
x

δ= −                                           (18) 

 

Now comes the time to deal with the main problem, i.e. to invert the differential 
operator. This study intends to provide a more simple representation for the 
general solution. Before doing so, some preliminary manipulations are performed 
to simplify the problem. According to the bending moment diagram, this equa-
tion represents an ordinary differential equation subject to boundary conditions 

(0) ( ) 0.M M L= =  On the other hand, the physics of the problem requires the 
bending moment to be zero at both ends. Such conditions suggest using a half-
range eigenfunction expansion of the bending moment in terms of the Fourier 
sine series as follows: 

 

1
( ) sin ,m

m

m xM x a
L
π∞

=
=∑                                      (19) 

 

with the coefficients ma  undetermined. This particular form guarantees the 
moment diagram to become zero at the boundaries. If this eigenfunction 
representation of ( )M x  is operated upon by ,D  the unknown coefficients can be 
found easily from the equation itself: 

 
22 2 2

2 2 2
1 1 1

d ( ) d dsin sin sin
d d dm m m

m m m

M x m x m x m m xa a a
L L L Lx x x
π π π π∞ ∞ ∞

= = =

   = = = −   
   

∑ ∑ ∑  

 
2

0
1

( ) sin ( ).m
m

m m xDM x a x x
L L
π π δ

∞

=

 ⇒ = − = − 
 

∑                                 (20) 

 

It requires the Dirac’s delta function to be expanded in the same way, i.e., in a 
half-range Fourier sine series expansion, which yields the following expressions: 

 

0
1

( ) sin ,m
m

m xx x A
L
πδ

∞

=
− =∑                                    (21) 

 
2

1 1
sin sin .m m

m m

m m x m xa A
L L L
π π π∞ ∞

= =

 − = 
 

∑ ∑                          (22) 

 

The unknown coefficients, ,mA  however, can be found easily recalling the 
sifting property of the Dirac’s delta function: 

 

0
00

2 2( )sin d sin ,
L

m
m xm zA z x z

L L L L
ππδ= − =∫                       (23) 
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where z  is the dummy integration variable. The unknown coefficients, ,ma  can 
be found as follows: 

 

0
2 2
2 sin .m

m xLa
Lm
π

π
= −                                        (24) 

 

Therefore, the function ( )M x  is determined. It is now possible to rewrite the 
equation for the bending moment of the beam as a function of the deflection, :u  

 
2

0
2 2 2

1

d ( ) 2( ) sin sin .
( )d ( )m

m xu M x L m xDu x
EI x L Lx EI x m

π π
π

∞

=
= = = −∑             (25) 

 

This equation can be simplified as follows: 
 
2

2
1

d( ) ( ),
d m

m

uDu x f x
x

∞

=
= =∑                                     (26) 

 

where 
 

0
2 2

2( ) sin sin .
( )m

m xL m xf x
L LEI x m
π π

π
= −                        (27) 

 

This equation has a solution in terms of a homogeneous solution and a 
particular integral as follows: 

 

( )
1

.h p h p m
m

u u u u u
∞

=
= + = +∑                                   (28) 

 

However, the boundary conditions require the homogeneous solution to be 
identically zero, i.e. 0,hu =  and hence, only the particular integral remains to be 
found. To find a generally applicable particular solution for the last differential 
equation, it is possible to find the Green’s function of the differential operator .D  
This can be done by the standard procedure described earlier, i.e. to solve the 
following differential equation: 

 

( , ) ( , ) ( ),Du x Dg x xξ ξ δ ξ= = −                                (29) 
 

subject to homogeneous boundary conditions. By making use of the Heaviside 
unit step function and integrating the preceding equation two times with respect 
to x  and using properties of the Dirac’s delta function, the Green’s function will 
be found as 

 

( , ) ( )d ( ) ( ),g x H x x xξ ξ α ξ β ξ= − + +∫                           (30) 
 

where ( )α ξ  and ( )β ξ  are to be determined. Applying the boundary conditions 
yields the following expressions for these two functions: 
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1 ( ), ,
( )

0, ,

H L
L

L

ξ ξ ξ
α ξ

ξ

− + <= 
 >

                                (31a) 

 

( ) ( ).Hβ ξ ξ ξ= −                                          (31b) 
 

Therefore, the Green’s function for the differential operator, ,D  is fully 
determined. After making some manipulations, the deflection of the beam, ,u  
will take the following form: 
 

0 0 0
1 0 0

( , ) ( ) ( ) ( , )d ( , )d .
L L

m m
m

Lu x x x H x f x x f x
L

ξξ ξ ξ ξ ξ ξ
∞

=

−= − − +∑∫ ∫            (32) 

 

This last equation can be considered as the influence line for the deflection of 
non-prismatic beams. Knowing the functions ,mf  it can be integrated to find the 
closed-form solution, or, if necessary, integrated numerically. Computations 
showed that numerical integration of the few first terms of mf  provides 
sufficiently accurate estimate of the deflection of both prismatic and non-
prismatic beams. Following examples show the ability of the presented approach. 
It is remarkable that, in cases with closed-form solution, the location of the 
maximum deflection, bending moment or shear force can be found by 
differentiating the equation of the deflection curve. Moreover, in the range of 
elastic behaviour, the superposition assumption holds and once the closed-form 
or numerical integration of the derived equation is found, it can be easily 
extended to any arbitrary loading pattern. 
 
 

4. EXAMPLES 
 

Here, some simple examples are presented utilizing the presented method in 
computing the deflection of both prismatic (with known closed-form solution) 
and non-prismatic beams. It should be remarked that there are other methods like 
the energy method, which can be applied to such problems. Meanwhile, the 
proposed approach seems to be general, easily programmable and applicable for 
any pattern of applied load. 
 

4.1. Deflection  of  prismatic  beams 
 

Let a simply supported prismatic beam of unit length and of unit stiffness 
1EI =  carry a unit point load, ,P  at its half length, 2.L  From mechanics of 

materials, the corresponding deflection is known to be 3 48 ,PL EI  or, 1 48  in 
this problem. Application of the presented method with the aid of different 
number of contributing terms is presented in Table 1. It is obvious that the 
solution converges with 0.01% error when only 3 terms are used. It is worth 
noting that the presented method for this particular case can be directly integrated 
to find the closed-form solution as well. 
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Table 1. Deflection of the middle of prismatic beams 
 

Number of 
contributing terms 

Current study Closed-form 
solution 

Error 

  1 0.020532 0.020833 0.000301 
  3 0.020786 0.020833 0.000048 
  5 0.020818 0.020833 0.000015 
10 0.020830 0.020833 0.000003 
20 0.020833 0.020833 0.000000 

 
4.2. Deflection  of  non-prismatic  beams 

 
Variations in the cross-section of non-prismatic beams are practically very 

different. Moreover, integration of the last equation, except in a few cases, may 
result in very long and tedious equations. Therefore, the closed-form solution 
was obtained only for a very popular class of beams used in structural engineer-
ing. Such class of non-prismatic beams, confronted very often in practice, is 
shown in Fig. 3. For these particular beams, the closed form solution of the 
equation has been obtained by direct integration of the last expression, derived 
for non-prismatic beams with parameters defined in Fig. 3. Closed-form solution 
for this particular problem can be found by substitution of appropriate terms 
given in the Appendix. A specific problem, outlined below, has been solved 
using the numerical integration of the last equation beside the direct use of the 
closed-form solution. 

A non-prismatic beam with geometry given in Fig. 4, has been solved with the 
presented method. The solution for the deflection at the point A (or B), has been 
found and compared to that provided by the energy method [4]. The influence 
line for the deflection of the points A and B are plotted in non-dimensional form 
in Fig. 5. The solution [4], based on the energy method, is (approximately) 

3
00.029 ( ),PL EI  where 0I  is the moment of inertia in the prismatic part of the 

beam (corresponding to 0 ).h  Solutions have been computed, based on both 
closed-form equation and numerical integration of the last equation. Table 2 
represents the results of the analysed cases employing different number of 
contributing terms for the deflection of point A (or B). It is noticeable that a  
 

 
 
 
 
 
 
 
 
 
 
Fig. 3. A general non-prismatic beam with linear variations in the cross-section at both ends. 

P 

h0 

h2 

b0 ξ 

a 

h h1 

b l0 

x0 
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Fig. 4. Non-prismatic beam with variable height, carrying concentrated loads. 
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Fig. 5. Influence lines of deflection for the cases x0 = L/4 (point A) and 3L/4 (point B). 

 
 

Table 2. Normalized deflection u/(PL3/EI0) of a non-prismatic beam at points A and B 
 

Number of contributing 
terms 

Current 
study 

Solution by energy 
method [4] 

Error 

1 0.0275 0.029 0.0015 
3 0.0296 0.029 – 0.0006 
5 0.0289 0.029 0.0001 

 
 

numerical integration has been used to find the solution. Again, it is evident that 
the solution converges very fast to that obtained by a closed form solution (or the 
value given by Popov [4]). The maximum deflection occurs somewhere close to 

3.x L=  
 
 

5. CONCLUSIONS 
 
The influence line for deflection of simply-supported non-prismatic beams has 

been developed. The procedure mainly consists of the derivation of the corres-
ponding Green’s function for the governing differential equation. The method of 

P P 

h0 
h0/4

b0 
L/12 

L/4 L/2 L/4 

A B 

u 
/ (

PL
3 /E

I 0)
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inverse operator has been applied and the inverse differential operator was found as 
a basis for the Green’s function of the main problem. The developed method 
showed a reasonably fast convergence by increasing the number of contributing 
terms. In elastic limits, the superposition assumption is applicable and, hence, any 
arbitrary loading pattern can be dealt with by the derived equation. Although the 
developed method is restricted only to simply supported beams, it has some 
advantages such as involvement of single integrals, which can be more easily 
evaluated or computed. Finally, the closed form solution for a class of non-
prismatic beams, very often used in practice, has been derived. 

 
 
 

APPENDIX 
 

CLOSED-FORM  SOLUTION  FOR  A  SPECIFIC  CASE   
OF  NON-PRISMATIC  BEAMS 

 
The closed form solution of Eq. (32) for the case of a non-prismatic beam 

given in Fig. 3, is as follows: 
 

3
0 0 1 0

0

3 3
02 0 1 0

0 0

( ) ( )sin
d ( ) ( )sin d

1 1

( ) ( )sin ( )sin
d d

1 1 1 1

( )sin

a b
m

a

L a

b

mx H xa mLy x H x
EI Lh h

h a

m mx H x LxL L
Lh h L h h

h L b h a

x mL
L

πξξ ξ πξξ ξ ξ ξ
ξ

πξ πξξ ξ ξ
ξ ξ

ξ ξ

πξ


 − −
= + − −  −   + −     

− − −
+ +

   − − −   + − + −      −      

+ −

∫ ∫

∫ ∫

3
2 0

0

( )sin
d d ,

1 1

b L

a b

mLx L
L L h h L

h L b

πξξξ ξ ξ
ξ


−
+  − −  + −   −   

∫ ∫

 

 
which can be evaluated by taking the following partial integrals, which appear in 
the main equation. The Heaviside’s unit step function, ,H  has been replaced 
by 0 or 1, depending on the integration limits. 
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The 1st partial integral (for x < ξ ): 
 

3 3
0 0

3 3
1 0 1 00 01 0

0

2 2

2 2

1

sin cos

22 2

( )sin ( )sin
d

( 1) ( )
1 1

sin

a a ah
a h h

m ci m xsi x m x

L LL

m mx xahL L
a h hh h

h a

m m m m m
L L L L L

π π π

ξξ

πξ πξξ ξ
ξ ξ

ξξ

πξ πξ πξ πξ πξ

ξ

=
− +

−
− − −

− −   
=    − +     −  + −    

         
                   × + 




∫ ∫

0

a






 
The 2nd partial integral (for x < ξ ): 

 

2

2 2

sin cos cos
( )sin d

b

b

a

a

m m mL Lx L
m L L Lx

L m mm

πξ πξ πξξ
πξξ ξ

π ππ

      
            − = − − +

 
  

∫
 

 

In these equations, si  and ci  functions are known tabulated sine-integral 
and cosine-integral functions, respectively, defined as [21]: 

 

0 0

sin cos( ) d , ( ) d .
t tz zsi t z ci t z

z z
= =∫ ∫  

 
The 3rd partial integral (for x < ξ ): 
 

First, two new variables are defined as follows: 
 

0 2

2 0

,
.

A h L h b
B h h

= −
= −  

 

Integration gives 
 

3
03 3

2 0

0

2

3
0 4 2 2

( )sin ( )sin
d [ ( )] d

( )
1 1

( 2 )sin1 ( )[ ( )]
2 ( )

L L

b b

m mx x
L Lh L b

A Bh h L
h L b

mA Ax A B m m A BLh L b ci
ALA A B L

πξ πξξ ξ
ξ ξ

ξξ

πξξ π π ξ
ξ

=

− −
= −

+ − − + −  −  
 − + + +  − +   +  


∫ ∫
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( )sin 2 cos

( ) ( )cos 2 sin

( )cos

( )

L

b

m B m Bm Ax B AL
AL AL

m A B m B m Bsi m Ax B AL
AL AL AL

mm A Ax B
L

L A B

π ππ

π ξ π ππ

πξπ

ξ

    × + −        
+       − + +            



+
−
+ 

         

 
The 4th partial integral: 
 

3
0

3
1 00 1 0

0

2 2

2

0

( )sin
d

( 1)
1 1

sin sin cos

2 22

a

a

mL
x x ahL
L L a h hh h

h a

m m m m mm ci m si L m
L L L L L

L L

πξξ
ξ

ξ

πξ πξ πξ πξ πξπ π π

ξ ξξ

 −     =  − +   −  + −    

          
                   × + + − + 

 
  

∫

 

 
The 5th partial integral: 
 

2 2

2 2

sin cos cos
( )sin d

b

b

a

a

m m mL L L
x m x L L LL
L L L m mm

πξ πξ πξξ
πξξ ξ

π ππ

      
            − = − −

 
  

∫  

 
The 6th partial integral: 
 

First, two new variables are defined as follows: 
 

0 2

2 0

,
.

A h L h b
B h h

= −
= −  

 

Integration gives 
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3
03 3

2 0

0

2
3

0
4 2 2

( )sin ( )sin
d [ ( )] d

( )
1 1

( 2 )sin
[ ( )] ( )

2 ( )

( )cos 2 sin

L L

b b

m mL Lx xL Lh L b
L L A Bh h L

h L b

mB A Bl B
x h L b m m A BL si

BLB L A B L

m A m Am A BL BL
BL

πξ πξξ ξ
ξ ξ

ξξ

πξξ π π ξ
ξ

π ππ

− −
= −

+ − − + −  −  
  − − +  − +   = +   +  


 × + + 
 

∫ ∫

( ) ( )sin 2 cos

( )cos

( )

L

b

BL

m A B m A m Aci m A BL BL
BL BL BL

mm B A BL
L

L A B

π ξ π ππ

πξπ

ξ

  
    

 +      − + −           

 +    + 
+ 



 

 
Solved example (specific case of the general solution): 
 

Deflection at point A, where P is applied on A: 
 

02 2
2 3sin , , , , .

4 4 4 4 4m
L m L L L La x x a b

m
π

π
−= = = = =  

 

Deflection at point A, where P is applied on B: 
 

02 2
2 3 3 3sin , , , , .

4 4 4 4 4m
L m L L L La x x a b

m
π

π
−= = = = =  
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Greeni  funktsiooni  kasutamine  mitteprismaatiliste  lihttalade  

läbipainde  uurimiseks  analüütilisel  meetodil 
 

Mehdi Veiskarami ja Solmaz Pourzeynali 
 
On esitatud mitteprismaatiliste lihttalade läbipainde mõjujoone koostamise 

arendatud metodoloogia, mis seisneb eelkõige Greeni funktsiooni leidmises läbi-
painde diferentsiaalvõrrandile ja tulemuste laiendamises tüüpülesannetele. On 
kasutatud pöördoperaatori meetodit koos ortogonaalse omafunktsiooni arendusega. 
Lõpplahend (mõjujoone võrrand) on esitatud integraalkujul, mille integraale saab 
arvutada kas analüütiliselt või numbriliselt. On esitatud näiteülesanne ja analüü-
tiline lahend tegelikkuses sageli esinevatele mitteprismaatilistele lihttaladele. 


