ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Contemporary trends in hydrophysical and hydrochemical parameters in the NE Baltic Sea; pp. 91–108
PDF | https://doi.org/10.3176/earth.2020.06

Authors
Silvie Lainela, Kristjan Herkül, Ivo Leito, Andres Jaanus, Ülo Suursaar
Abstract

The current study focuses on trends in hydrophysical and -chemical parameters (e.g. temperature, salinity, dissolved oxygen, chlorophyll a (Chl a), pH and nutrients) in the Estonian coastal sea and offshore areas in relation to the biogeochemical processes and marine carbon dioxide system of the Baltic Sea. Analysis of 586 time series of these parameters, retrieved during national monitoring activities in 1993–2017, revealed a number of significant trends, which characterize the changes in the northeastern (NE) Baltic Sea. The number of significant trends in the surface layer was slightly higher in the coastal sea area than in the offshore area. No significant (e.g. climate change-related) temperature trends were revealed in the surface layers of the Estonian offshore area. Over a longer time frame (since the 1970s–1980s), the trends in hydrochemical parameters have shown improved ecological conditions in the Estonian coastal waters, however, further improvement is not so obvious. In fact, most nutrient trends were positive over the last two decades. A positive Chl a trend was detected in the offshore area of the Baltic Proper. Dissolved oxygen trends in the bottom layers were all negative. So far, not enough parameters have been monitored for the evaluation of marine acidification processes. Several important recommendations for further improvement of monitoring programmes are suggested.

References

Alenius, P., Myrberg, K., Roiha, P., Lips, U., Tuomi, L., Pettersson, H. & Raateoja, M. 2016. Gulf of Finland physics. In The Gulf of Finland Assessment(Raateoja, M. & Setälä, O., eds), Reports of the Finnish Environment Institute27, 42–57. 

Almén, A. K., Glippa, O., Pettersson, H., Alenius, P. & Engström-Öst, J. 2017. Changes in wintertime pH and hydrography of the Gulf of Finland (Baltic Sea) with focus on depth layers. Environmental Monitoring and Assessment189, 147.
https://doi.org/10.1007/s10661-017-5840-7

Andersson, A., Meier, H. E. M., Ripszam, M., Rowe, O., Wikner, J., Haglund, P., Eilola, K., Legrand, C., Figueroa, D., Paczkowska, J., Lindehoff, E., Tysklind, M. & Elmgren, R. 2015. Projected future climate change and Baltic Sea ecosystem management. Ambio44(Suppl. 3), 345–356.
https://doi.org/10.1007/s13280-015-0654-8

Andersson, P., Håkansson, B., Håkansson, J., Sahlsten, E., Havenhand, J., Thorndyke, M. & Dupont, S. 2008. Marine acidification: on effects and monitoring of marine acidification in the seas surrounding Sweden. SMHI Report Oceanography, 92, 1–62.

Astok, V., Otsmann, M. & Suursaar, Ü. 1999. Water exchange as the main physical process in semi-enclosed marine systems: the Gulf of Riga case. Hydrobiologia393, 11–18. 
https://doi.org/10.1007/978-94-017-0912-5_2

Baltic Sea Hydrographic Commission. 2013. Baltic Sea Bathymetry Database, version 0.9.3, http://data.bshc.pro/ [accessed 30.04.2019].

Carstensen, J., Andersen, J. H., Gustafsson, B. G. & Conley, D. J. 2014. Deoxygenation of the Baltic Sea during the last century. Proceedings of the National Academy of Sciences111, 5628–5633. 
https://doi.org/10.1073/pnas.1323156111

Conley, D. J., Humborg, C., Rahm, L., Savchuk, O. P. & Wulff, F. 2002. Hypoxia in the Baltic Sea and basin-scale changes in phosphorus biogeochemistry. Environmental Science & Technology36, 5315–5320.
https://doi.org/10.1021/es025763w

Conley, D. J., Bj̈orck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B. G., Hietanen, S., Kortekaas, M., Kuosa, H., Markus Meier, H. E. & Müller-Karulis, B. 2009. Hypoxia-related processes in the Baltic Sea. Environmental Science & Technology43, 3412–3420. 
https://doi.org/10.1021/es802762a

Cramer, W., Yohe, G. W., Auffhammer, M., Huggel, C., Molau, U., da Silva Dias, M. A. F., Solow, A., Stone, D. A. & Tibig, L. 2014. Detection and attribution of observed impacts. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E. Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R. & White, L. L., eds), pp. 979–1037. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Feistel, R., Nausch, G., Matthaus, W. & Hagen, E. 2003. Temporal and spatial evolution of the Baltic deep water renewal in spring 2003. Oceanologia45, 623–642. 

Feistel, R., Hagen, E. & Nausch, G. 2006. Unusual Baltic inflow activity in 2002–2003 and varying deep-water properties. Oceanologia48, 21–35.

Feistel, R., Nausch, G. & Wasmund, N. (eds). 2008. State and Evolution of the Baltic Sea, 1952–2005: A Detailed 50-Year Survey of Meteorology and Climate, Physics, Chemistry, Biology, and Marine Environment. John Wiley & Sons, Hoboken, 703 pp.
https://doi.org/10.1002/9780470283134

Feistel, S., Feistel, R., Nehring, D., Matthäus, W., Nausch, G. & Naumann, M. 2016. Hypoxic and anoxic regions in the Baltic Sea, 1969–2015. Meereswissenschaftliche Berichte, Warnemünde, 100, 1–84.

Grasshoff, K., Ehrhardt, M. & Kremling, K. (eds). 1983. Methods of Seawater Analysis. Second, Revised and Extended ed. Verlag Chemie, Weinheim, 419 pp.

Grasshoff, K., Ehrhardt, M. & Kremling, K. (eds). 1999. Methods of Seawater Analysis. Third ed. Wiley-VCH, Weinheim, 600 pp.
https://doi.org/10.1002/9783527613984

Gustafsson, B., Schenk, F., Bleckner, T., Meier, H. E. M., Müller-Karulis, B., Neumann, T., Ruoho-Airola, T., Savchuk, O. P. & Zorita, E. 2012. Reconstructing the development of Baltic Sea eutrophication 1850–2006. Ambio41, 534–548. 
https://doi.org/10.1007/s13280-012-0318-x

Hagy, J. D., Boynton, W. R., Keefe, C. W. & Wood, K. V. 2004. Hypoxia in Chesapeake Bay, 1950–2001: long-term change in relation to nutrient loading and river flow. Estuaries27, 634–658.
https://doi.org/10.1007/BF02907650

Hamed, K. H. 2008. Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. Journal of Hydrology349, 350–363.
https://doi.org/10.1016/j.jhydrol.2007.11.009

Hansson, M., Viktorsson, L. & Andersson, L. 2018. Oxygen survey in the Baltic Sea 2017 – extent of anoxia and hypoxia, 1960–2017. SMHI Report Oceanography, 63, 1–17.

Havenhand, J. N. 2012. How will ocean acidification affect Baltic Sea ecosystems? An assessment of plausible impacts on key functional groups. Ambio41, 637–644.
https://doi.org/10.1007/s13280-012-0326-x

HELCOM. 1986. First periodic assessment of the state of the marine environment of the Baltic Sea area, 1980−1985; general conclusions. Baltic Sea Environmental Proceedings, 17A, 1–59.

HELCOM. 1988. Guidelines for the Baltic monitoring pro­gramme for the third stage. Parts A–D. Baltic Sea Environmental Proceedings, 27A–D, A(1–33), B(1–38), C(1–85), D(1–88).

HELCOM. 2001. Fourth periodic assessment of the state of the environment of the Baltic Marine area, 1994–1998. Baltic Sea Environmental Proceedings, 82B, 1–218.

HELCOM. 2009. Eutrophication in the Baltic Sea – An integrated thematic assessment of the effects of nutrient enrichment and eutrophication in the Baltic Sea region. Baltic Sea Environmental Proceedings, 115B, 1–152.

HELCOM. 2014. Eutrophication status of the Baltic Sea 2007−2011 – A concise thematic assessment. Baltic Sea Environmental Proceedings, 143, 1–41.

HELCOM. 2017. HELCOM COMBINE Manual
https://helcom.fi/action-areas/monitoring-and-assessment/monito ring-guidelines/combine-manual/ [accessed 07.07. 2019].

HELCOM. 2018a. Sources and pathways of nutrients to the Baltic Sea. Baltic Sea Environmental Proceedings, 153, 1–48.

HELCOM. 2018b. State of the Baltic Sea – Second HELCOM holistic assessment 2011−2016. Baltic Sea Environmental Proceedings, 155, 1–155.

Hipel, K. W. & McLeod, A. I. 2005. Time Series Modelling of Water Resources and Environmental Systems, Vol. 45. Elsevier, Amsterdam, 1013 pp.

Hjalmarsson, S., Wesslander, K., Anderson, L. G., Omstedt, A., Perttilä, M. & Mintrop, L. 2008. Distribution, long-term development and mass balance calculation of total alkalinity in the Baltic Sea. Continental Shelf Research28, 593–601. 
https://doi.org/10.1016/j.csr.2007.11.010

IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex,  V. & Midgley,  P. M., eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.

Ishizu, M., Miyazawa, Y., Tsunoda, T. & Ono, T. 2019. Long-term trends in pH in Japanese coastal waters. Biogeosciences Discussions [in review].
https://doi.org/10.5194/bg-2019-150

ISO. 1992. Water Quality – Measurement of Biochemical Parameters – Spectrometric Determination of the Chlorophyll-a Concentration. ISO 10260:1992, International Organization for Standardization, Geneva.

ISO. 1994. Water Quality – Determination of pH. ISO 10523:1994, International Organization for Standardization, Geneva.

ISO. 2008. Water Quality – Determination of pH. ISO 10523:2008, International Organization for Standardization, Geneva.

Kaukver, K. (ed.). 2015. Estonian Environmental Monitoring 2013. Estonian Environmental Agency, Tallinn, 193 pp.

Kitsiou, D. & Karydis, M. 2011. Coastal marine eutrophication assessment: a review on data analysis. Environment International37, 778–801.
https://doi.org/10.1016/j.envint.2011.02.004

Kuliński, K., Schneider, B., Szymczycha, B. & Stokowski, M. 2017. Structure and functioning of the acid–base system in the Baltic Sea. Earth System Dynamics8, 1107–1120. 
https://doi.org/10.5194/esd-8-1107-2017

Lehmann, A., Getzlaff, K. & Harlaß, J. 2011. Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Climate Research46, 185–196. 
https://doi.org/10.3354/cr00876

Lehtoranta, J., Savchuk, O. P., Elken, J., Dahlbo, K., Kuosa, H., Raateoja, M., Kauppila, P., Räike, A. & Pitkänen, H. 2017. Atmospheric forcing controlling inter-annual nutrient dynamics in the open Gulf of Finland. Journal of Marine Systems171, 4–20. 
https://doi.org/10.1016/j.jmarsys.2017.02.001

Libiseller, C. & Grimvall, A. 2002. Performance of partial Mann−Kendall tests for trend detection in the presence of covariates. Environmetrics, 13, 71–84. 
https://doi.org/10.1002/env.507

Liblik, T. & Lips, U. 2011. Characteristics and variability of the vertical thermohaline structure in the Gulf of Finland in summer. Boreal Environment Research16A, 73–83.

Liblik, T., Laanemets, J., Raudsepp, U., Elken, J. & Suhhova, I. 2013. Estuarine circulation reversals and related rapid changes in winter near-bottom oxygen conditions in the Gulf of Finland, Baltic Sea. Ocean Science9, 917–930. 
https://doi.org/10.5194/os-9-917-2013

Liblik, T., Skudra, M. & Lips, U. 2017. On the buoyant sub-surface salinity maxima in the Gulf of Riga. Oceanologia59, 113–128. 
https://doi.org/10.1016/j.oceano.2016.10.001

Liblik, T., Naumann, M., Alenius, P., Hansson, M., Lips, U., Nausch, G., Tuomi, L., Wesslander, K., Laanemets, J. & Viktorsson, L. 2018. Propagation of impact of the recent Major Baltic Inflows from the Eastern Gotland Basin to the Gulf of Finland. Frontiers in Marine Science5, 222. 
https://doi.org/10.3389/fmars.2018.00222

Lips, U., Laanemets, J., Lips, I., Liblik, T., Suhhova, I. & Suursaar, Ü. 2017. Wind-driven residual circulation and related oxygen and nutrient dynamics in the Gulf of Finland (Baltic Sea) in winter. Estuarine, Coastal and Shelf Science195, 4–15. 
https://doi.org/10.1016/j.ecss.2016.10.006

MacKenzie, B. R. & Schiedek, D. 2007. Daily ocean monitoring since the 1860s shows record warming of northern European seas. Global Change Biology,13, 1335–1347. 
https://doi.org/10.1111/j.1365-2486.2007.01360.x

Matthäus, W. & Ulrich Lass, H. 1995. The recent salt inflow into the Baltic Sea. Journal of Physical Oceanography25, 280–286. 
https://doi.org/10.1175/1520-0485(1995)025<0280:TRSIIT>2.0.CO;2

McDougall, T. J., Jackett, D. R., Millero, F. J., Pawlowicz, R. & Barker, P. M. 2012. A global algorithm for estimating absolute salinity. Ocean Science8, 1123–1134.
https://doi.org/10.5194/os-8-1123-2012

Meier, H. M., Andersson, H. C., Eilola, K., Gustafsson, B. G., Kuznetsov, I., Müller‐Karulis, B., Neumann, T. & Savchuk, O. P. 2011. Hypoxia in future climates: a model ensemble study for the Baltic Sea. Geophysical Research Letters38
https://doi.org/10.1029/2011GL049929

Meier, H. E. M., Eilola, K., Almroth-Rosell, E., Schimanke, S., Kniebusch, M., Höglund, A., Pemberton, P., Liu, Y., Väli, G. & Saraiva, S. 2018. Disentangling the impact of nutrient load and climate changes on Baltic Sea hypoxia and eutrophication since 1850. Climate Dynamics53, 1145−1166. 
https://doi.org/10.1007/s00382-018-4296-y

Mohrholz, V., Naumann, M., Nausch, G., Krüger, S. & Gräwe, U. 2015. Fresh oxygen for the Baltic Sea – an exceptional saline inflow after a decade of stagnation. Journal of Marine Systems148, 152–166.
https://doi.org/10.1016/j.jmarsys.2015.03.005

MSFD. 2008. Directive 2008/56/EC of the European Parliament and of the Council (Marine Strategy Framework Directive). EUR-Lex – 32008L0056 – EN, 
http://data.europa.eu/eli/dir/2008/56/oj [accessed 07.07.2019]. 

Mulet, S., Buongiorno Nardelli, B., Good, S., Pisano, A., Greiner, E. & Monier, M. 2018 Ocean temperature and salinity. In Copernicus Marine Environment Monitoring Service Ocean State: Copernicus Marine Service Ocean State Report (Von Schuckmann, K., ed.), Journal of Operational Oceanography11(Suppl. 1), S1–S142.

Omstedt, A., Edman, M., Claremar, B., Frodin, P., Gustafsson, E., Humborg, C., Hägg, H., Mörth, M., Rutgersson, A., Schurgers, G. & Smith, B. 2012. Future changes in the Baltic Sea acid–base (pH) and oxygen balances. Tellus B: Chemical and Physical Meteorology64, 19586. 
https://doi.org/10.3402/tellusb.v64i0.19586

Pohlert, T. 2018. Trend: Non-Parametric Trend Tests and Change-Point Detection. R package version 1.1.0, 
https://CRAN.R-project.org/package=trend [accessed 20.02.2020].

Raateoja, M., Kuosa, H. & Hällfors, S. 2011. Fate of excess phosphorus in the Baltic Sea: a real driving force for cyanobacterial blooms? Journal of Sea Research65, 315–321. 
https://doi.org/10.1016/j.seares.2011.01.004

Raateoja, M., Pitkänen, H., Eremina, T., Lips, U., Zagrebina, T., Kauppila, P., Knuuttila, S., Ershova, A., Lange, E., Jaanus, A. & Lainela, S. 2016. Nutrients in the water. In The Gulf of Finland Assessment (Raateoja, M. & Setälä, O., eds), Reports of the Finnish Environment Institute27, 94–113.

R Core Team. 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 
https://www.R-project.org/ [accessed 20.02.2020].

Schneider, B., Eilola, K., Lukkari, K., Müller-Karulis, B. & Neumann, T. 2015. Environmental impacts – Marine biogeochemistry. In Second Assessment of Climate Change for the Baltic Sea Basin (The BACC II Author Team, ed.), pp. 337–361. Springer, Cham.
https://doi.org/10.1007/978-3-319-16006-1_18

Schneider, B. & Müller, J. D. 2018. Biogeochemical Transformations in the Baltic Sea. Springer International Publishing, 110 pp. 
https://doi.org/10.1007/978-3-319-61699-5

Skudra, M. 2017. Features of Thermohaline Structure and Circulation in the Gulf of Riga. PhD Thesis, Tallinn University of Technology, TUT Press, 131 pp.

Skudra, M. & Lips, U. 2017. Characteristics and inter-annual changes in temperature, salinity and density distribution in the Gulf of Riga. Oceanologia59, 37–48. 
https://doi.org/10.1016/j.oceano.2016.07.001

Soomere, T., Myrberg, K., Leppäranta, M. & Nekrasov, A. 2008. The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997–2007. Oceanologia50, 287−362.

Sukhotin, A. & Berger, V. 2013. Long-term monitoring studies as a powerful tool in marine ecosystem research. Hydrobiologia706, 1–9.
https://doi.org/10.1007/s10750-013-1456-2

Suursaar, Ü. 1992. The state of the Estonian coastal waters in 1979–1990: seasonal, vertical and horizontal variations. Proceedings of the Estonian Academy of Sciences, Ecology2, 129–136.

Suursaar, Ü. 1994. Estonian marine monitoring 1968−1991: results and evaluation. Finnish Marine Research262, 123–134.

Suursaar, Ü. & Kullas, T. 2016. Water flows, nutrient exchange and excursions of fronts in the straits between the Baltic sub-basins. In 2016 Geoscience and Remote Sensing Symposium (IGARSS), Beijing, pp. 4595−4598. IEEE.
https://doi.org/10.1109/IGARSS.2016.7730199

Vahtera, E., Conley, D., Gustafsson, B. G., Kuosa, H., Pitkänen, H. & Savchuk, O. P., Tamminen, T., Viitasalo, M., Voss, M., Wasmund, N. & Wulff, F. 2007. Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio36, 186–194.
https://doi.org/10.1579/0044-7447(2007)36[186:IEFENC]2.0.CO;2

Waldbusser, G. G., Voigt, E. P., Bergschneider, H., Green, M. A. & Newell, R. I. 2011. Biocalcification in the eastern oyster (Crassostrea virginica) in relation to long-term trends in Chesapeake Bay pH. Estuaries and Coasts34, 221–231. 
https://doi.org/10.1007/s12237-010-9307-0

Wasmund, N. & Uhlig, S. 2003. Phytoplankton trends in the Baltic Sea. ICES Journal of Marine Science60, 177–186. 
https://doi.org/10.1016/S1054-3139(02)00280-1

Wulff, F., Rahm, L. & Larsson, P. (eds). 2001. A System Analysis of the Baltic Sea. Springer-Verlag, Berlin Heidelberg, 457 pp. 
https://doi.org/10.1007/978-3-662-04453-7

  

Back to Issue