ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
The influence of fibre orientation in self-compacting concrete on 4-point bending strength; pp. 337–346
PDF | https://doi.org/10.3176/proc.2019.3.12

Authors
Heiko Herrmann, Oksana Goidyk, Hendrik Naar, Tanel Tuisk, Andres Braunbrück
Abstract

This contribution presents the performed experiments and experimental setup in detail for future reference and the results of bending tests performed on steel fibre concrete beam specimen, which have been cut out of a larger plate. These beams have different fibre orientation distributions, due to being taken from different parts of the plate and with different orientation with respect to the flow of the fresh concrete.

References

1. Torres, A., Brandt, J., Lear, K., and Liu, J. A looming tragedy of the sand commons. Science, 2017, 357(6355), 970–971.
https://doi.org/10.1126/science.aao0503

2. Damme, H. V. Concrete material science: past, present, and future innovations. Cem. Concr. Res., 2018, 112, 5–24.
https://doi.org/10.1016/j.cemconres.2018.05.002

3. Suuronen, J.-P., Kallonen, A., Eik, M., Puttonen, J., Serimaa, R., and Herrmann, H. Analysis of short fibres orientation in steel fibre reinforced concrete (SFRC) using x-ray tomography. J. Mat. Sci., 2012, 1–10.
https://doi.org/10.1007/s10853-012-6882-4

4. Svec, O., Zirgulis, G., Bolander, J. E., and Stang, H. Influence of formwork surface on the orientation of steel fibres within self-compacting concrete and on the mechanical properties of cast structural elements. Cem. Concr. Compos., 2014, 50(0), 60–72.
https://doi.org/10.1016/j.cemconcomp.2013.12.002

5. Krasnikovs, A., Kononova, O., Khabbaz, A., Machanovsky, E., and Machanovsky, A. Post-cracking

behaviour of high strength fiber concrete prediction and validation. WASET, 2011, 59, 988–992.

6. Macanovskis, A., Lusis, V., and Krasnikovs, A. Crack opening investigation in fiberconcrete. WASET, 2014, 8(4), 430–438.

7. Laranjeira, F., Grünewald, S., Walraven, J., Blom, K., Molins, C., and Aguadoa, A. Characterization of the orientation profile of steel fiber reinforced concrete. Mat. Struct., 2011, 44(6), 1093–1111.
https://doi.org/10.1617/s11527-010-9686-5

8. Mishurova, T., L´eonard, F., Oesch, T., Meinel, D., Bruno, G., Rachmatulin, N., et al. Evaluation of fiber orientation in a composite and its effect on material behavior. In Proceedings of the 7th Conference on Industrial Computed Tomography (ICT), Vol.22(03), Leuven, Belgium, February 7–9, 2017. http://www.ndt.net/?id=20818.

9. Eik, M., Herrmann, H., and Puttonen, J. Orthotropic constitutive model for steel fibre reinforced concrete: linear-elastic state and bases for the failure. InProceedings of the XII Finnish Mechanics Days,Tampere, Finland, June 4–5 (Kouhia, R., Mäkinen, J.,Pajunen, S., and Saksala, T., eds). Finnish Associationfor Structural Mechanics, 2015, 255–260.

10. Eik, M., Puttonen, J., and Herrmann, H. The effect of approximation accuracy of the orientation distributionfunction on the elastic properties of short fibre reinforced composites. Comp. Struct., 2016, 148, 12–18.
https://doi.org/10.1016/j.compstruct.2016.03.046

11. Herrmann, H. An improved constitutive model for short fibre reinforced cementitious composites (SFRC) based on the orientation tensor. In Generalized continua as models for classical and advanced

materials (Altenbach, H. and Forest, S., eds). Springer International Publishing, Switzerland, 2016, 213–227.

12. Herrmann, H. and Beddig, M. Tensor series expansion of a spherical function for use in constitutive theory ofmaterials containing orientable particles. Proc. Est. Acad. Sci., 2018, 67(1), 73–92.
https://doi.org/10.3176/proc.2018.1.04

13. Vicente, M., Minguez, J., and González, D. The use of computed tomography to explore the microstructure of materials in civil engineering: from rocks to concrete. In Computed Tomography – Advanced Applications (Halefoglu, D. A. M., ed.). InTech, 2017, 207–230.
https://doi.org/10.5772/intechopen.69245

14. Schnell, J., Schladitz, K., and Schuler, F. Richtungsanalyse von fasern in betonen auf basis der computer-tomographie. Beton-Stahlbetonbau, 2010, 105(2), 72–77.
https://doi.org/10.1002/best.200900055

15. Ponikiewski, T., Katzer, J., Bugdol, M., and Rudzki, M. X-ray computed tomography harnessed to determine 3D spacing of steel fibres in self compacting concrete (SCC) slabs. Constr. Build. Mater., 2015, 74(0), 102–108.
https://doi.org/10.1016/j.conbuildmat.2014.10.024

16. Ponikiewski, T., Katzer, J., Bugdol, M., and Rudzki, M. Steel fibre spacing in self-compacting concrete precast walls by X-ray computed tomography. Mater. Struct., 2015, 48(12), 3863–3874.
https://doi.org/10.1617/s11527-014-0444-y

17. Pittino, G., Geier, G., Fritz, L., Hadwiger, M., Rosc, J., and Pabel, T. Computertomografische untersuchung von stahlfaserspritzbeton mit mehrdimensionalen transferfunktionen. Beton-Stahlbetonbau, 2011, 106(6), 364–370.
https://doi.org/10.1002/best.201100009

18. Vicente, M. A., Gonzalez, D. C., and Minguez, J. Determination of dominant fibre orientations in fibre-reinforced high-strength concrete elements based on computed tomography scans. Nondestr. Test. Eval., 2014, 29(2), 164–182.
https://doi.org/10.1080/10589759.2014.914204

19. Oesch, T. S., Landis, E. N., and Kuchma, D. A. Conventional concrete and uhpc performance–damage relationships identified using computed tomography. J. Eng. Mech., 2016, 142(12), 04016101.

20. Oesch, T. In-situ CT investigation of pull-out failure for reinforcing bars embedded in conventional and high-performance concretes. In Proceedings of the 6th Conference on Industrial Computed Tomography, Wels, Austria, February 9–12, 2016. http://www.ndt.net/article/ctc2016/papers/ICT2016 paperid83.pdf
https://doi.org/10.1016/j.csndt.2016.05.007

21. Oesch, T. S. Investigation of fiber and cracking behavior for conventional and ultra-high performance concretes using X-ray computed tomography. PhD thesis. University of Illinois, Urbana-Champaign, 2015.

22. Pastorelli, E. and Herrmann, H. Time-efficient automated analysis for fibre orientations in steel fibre reinforced concrete. Proc. Est. Acad. Sci., 2016, 65(1), 28–36.
https://doi.org/10.3176/proc.2016.1.02

23. Pastorelli, E. and Herrmann, H. Virtual reality visualization for short fibre orientation analysis. In Proceedings of the 14th Biennial Baltic Electronic Conference (BEC), Tallinn, Estonia, October 6–8, 2014. Institute of Electrical and Electronics Engineers, 2014, 201–204.
https://doi.org/10.1109/BEC.2014.7320591

24. Zhang, S., Liao, L., Song, S., and Zhang, C. Experimental and analytical study of the fibre distribution in SFRC: a comparison between image processing and the inductive test. Compos. Struct., 2018, 188, 78–88.
https://doi.org/10.1016/j.compstruct.2018.01.006

25. Eiduks, M., Krasnikovs, A., Dunskis, E., and Kononova, O. Investigation of fibre orientation in viscous fluid. Sci.J. Riga Tech. Univ., 2010, 33, 98–102. https://ortus.rtu.lv/science/lv/publications/8346 .

26. Kononova, O., Krasnikovs, A., Lapsa, V., Kalinka, J., and Galushchak, A. Internal structure formation in high strength fiber concrete during casting. In International Conference on Applied Mechanics and Mechanical Engineering (ICAMME 2011) Venice, Italy, November 28–30, 2011, 1864–1867.

27. Zirgulis, G., Svec, O., Geiker, M. R., Cwirzen, A., and Kanstad, T. Influence of reinforcing bar layout on fibre orientation and distribution in slabs cast from fibre-reinforced self-compacting concrete (FRSCE). Struct. Concr., 17(2), 245–256.
https://doi.org/10.1002/suco.201500064

28. Herrmann, H. and Lees, A. On the influence of the rheological boundary conditions on the fibre orientations in the production of steel fibre reinforced concrete elements. Proc. Est. Acad. Sci., 2016, 65(4), 408–413.
https://doi.org/10.3176/proc.2016.4.08

29. Herrmann, H., Goidyk, O., and Braunbrück, A. Influence of the flow of self-compacting steel fiber reinforced concrete on the fiber orientations, a report on work in progress. In Short fiber reinforced cementitious composites and ceramics (Herrmann, H. and Schnell, J., eds). Springer, 2019, 97–110.
https://doi.org/10.1007/978-3-030-00868-0_7

30. Herrmann, H., Braunbr¨uck, A., Tuisk, T., Goidyk, O., and Naar, H. An initial report on the effect of the fiber orientation on the fracture behavior of steel fiber reinforced self-compacting concrete. In Short fiber reinforced cementitious composites and ceramics (Herrmann, H. and Schnell, J., eds). Springer, 2019, 33–50.
https://doi.org/10.1007/978-3-030-00868-0_3

31. González, D. C., Vicente, M. A., and Ahmad, S. Effect of cyclic loading on the residual tensile strength of steel fiber-reinforced high-strength concrete. J. Mat. Civ. Eng., 2015, 27(9), 04014241.
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001200

32. González, D. C., Moradillo, R., M´ınguez, J., Martínez, J. A., and Vicente, M. A. Postcracking residual strengths of fiber-reinforced high-performance concrete after cyclic loading. Struct. Concr., 2018, 19(2), 340–351.
https://doi.org/10.1002/suco.201600102

33. Severstal Metiz. Hendix prime 75/52 – hooked ends fiber. http://www.severstalmetiz.ru/eng/catalogue/1930/document6219o.shtml?6605,1

34. Pan, B., Qian, K., Xie, H., and Asundi, A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas. Sci. Technol., 2009, 20(6), 062001.
https://doi.org/10.1088/0957-0233/20/6/062001

35. Shi, X., Pang, H., Zhang, X., Liu, Q., and Ying, M. In-situ micro-digital image speckle correlation technique for characterization of materials’ properties and verification of numerical models. IEEE Trans. Compon. Packag. Technol., 2004, 27(4), 659–667.
https://doi.org/10.1109/TCAPT.2004.838907

36. Chu, T. P. and Poudel, A. Digital image correlation techniques for aerospace applications. In ASNT Annual Conference 2014, 37–44.

37. Hild, F. and Roux, S. Digital image correlation: from displacement measurement to identification of elastic properties – a review. Strain, 42(2), 69–80.
https://doi.org/10.1111/j.1475-1305.2006.00258.x

38. Andre, D. Pydic. https://gitlab.com/damien.andre/pydic, 2018.

39. Grosse, C. U., Reinhardt, H.W., and Finck, F. Signal-based acoustic emission techniques in civil engineering. J. Mater. Civ. Eng., 2003, 15(3), 274–279.
https://doi.org/10.1061/(ASCE)0899-1561(2003)15:3(274)

40. Wu, K., Chen, B., and Yao, W. Study on the AE characteristics of fracture process of mortar, concrete and steel-fiber-reinforced concrete beams. Cem. Concr. Res., 2000, 30(9), 1495–1500.
https://doi.org/10.1016/S0008-8846(00)00358-6

41. Zhou, J. A study of acoustic emission technique for concrete damage detection. MSc thesis. Michigan Technological University, Department of Civil and Environmental Engineering, 2011. https://digitalcommons.mtu.edu/etds/726.

42. JACK audio connection kit. http://jackaudio.org/

43. Ardour5.5.0. https://ardour.org/

44. Advanced Linux Sound Architecture (ALSA). https://www.alsa-project.org

45. The Matplotlib Development Team. Matplotlib. https://matplotlib.org/

46. Herrmann, H., Eik, M., Berg, V., and Puttonen, J. Phenomenological and numerical modelling of short fibre reinforced cementitious composites. Meccanica, 2014, 49(8), 1985–2000.
https://doi.org/10.1007/s11012-014-0001-3

47. Eik, M., Puttonen, J., and Herrmann, H. An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibres. Comp. Struct., 2015, 121(0), 324–336.
https://doi.org/10.1016/j.compstruct.2014.11.018

48. Walraven, J., Bigaj-van Vliet, A., et al. fib. Model code for Concrete Structures 2010. Wilhelm Ernst & Sohn, Verlag f¨ur Architektur und TechnischeWissenschaften GmbH & Co. KG, Berlin, 2013.

Back to Issue