headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
Vol. 68, Issue 4
Vol. 68, Issue 3
Vol. 68, Issue 2
Vol. 68, Issue 1
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Properties of chitin extracted from Estonian mushrooms; pp. 333–336

(Full article in PDF format) https://doi.org/10.3176/proc.2019.3.09


Authors

Stephanie Baumgartner, Mihkel Viirsalu, Andres Krumme, James Mendez

Abstract

Fungi contain a significant amount of chitin in their cell walls presenting an attractive source for this commercially significant material. In this study, chitin was extracted from eight different mushroom species native to Estonia. Significant differences in molar mass, chitin content, and fibre size were observed while the degree of acetylation was mostly similar.

Keywords

chitin, fungi, mushroom, viscosity.

References

1. Zeng , J. B. et al. Chitin Whiskers: an overview. Biomacro­molecules , 2012 , 13(1) , 1−11.
https://doi.org/10.1021/bm201564a

2. Aranaz , I. et al. Cosmetics and cosmeceutical applications of chitin , chitosan and their derivatives. Polymers , 2018 , 10(2).
https://doi.org/10.3390/polym10020213

3. Ueno , H. , Mori , T. , and Fujinaga , T. Topical formulations and wound healing applications of chitosan. Adv. Drug Delivery Rev. , 2001 , 52(2) , 105−115.
https://doi.org/10.1016/S0169-409X(01)00189-2

4. Shields , J. D. O. and Robin , M. The Blue Crab: Diseases , Parasites and Other Symbionts. Faculty Publications from the Harold W. Manter Laboratory of Parasitology , 2003.

5. Lin , N. et al. Preparation of fungus-derived chitin nano­crystals and their dispersion stability evaluation in aqueous media. Carbohydr. Polym. , 2017 , 173 , 610−618.
https://doi.org/10.1016/j.carbpol.2017.06.016

6. Draczynski , Z. Honeybee corpses as an available source of chitin. J. Appl. Polym. Sci. , 2008 , 109(3) , 1974−1981.
https://doi.org/10.1002/app.28356

7. Ifuku , S. et al. Preparation of chitin nanofibers from mush­rooms. Materials , 2011 , 4(8) , 1417−1425.
https://doi.org/10.3390/ma4081417

8. Mendez , J. D. et al. Optimizing the extraction of chitin from underutilized sources. J. Chitin and Chitosan Sci. , 2015 , 3(1) , 77−80.
https://doi.org/10.1166/jcc.2015.1083

9. Czechowska-Biskup , R. et al. Determination of degree of deacetylation of chitosan − comparision of methods. Prog. Chem. App. Chitin Der. , 2012 , XVII , 5−20.

10. Domard , A. and Rinaudo , M. Preparation and charac­terization of fully deacetylated chitosan. Int. J. Biol. Macromol. , 1983 , 5(1) , 49−52.
https://doi.org/10.1016/0141-8130(83)90078-8

11. Solomon , O. F. C. and Ciutǎ , I. Z. Détermination de la viscosité intrinsèque de solutions de polymères par une simple détermination de la viscosité. J. Appl. Polym. Sci. , 1962 , 6(24) , 683−686.

12. Costa , C. N. et al. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride. Carbohydr. Polym. , 2015 , 133 , 245−250.
https://doi.org/10.1016/j.carbpol.2015.06.094

13. Moura , C. M. D. et al. Evaluation of molar weight and deacetylation degree of chitosan during chitin deacetylation reaction: used to produce biofilm. Chem. Eng. Process. Process Intensif. , 2011 , 50(4) , 351−355.
https://doi.org/10.1016/j.cep.2011.03.003

14. Hwang , K. T. et al. Controlling molecular weight and degree of deacetylation of chitosan by response surface methodology. J. Agric. Food Chem. , 2002 , 50(7) , 1876−1882.
https://doi.org/10.1021/jf011167u

15. Hassainia , A. , Satha , H. , and Boufi , S. Chitin from Agaricus bisporus: extraction and characterization. Int. J. Biol. Macromol. , 2018 , 117 , 1334−1342.
https://doi.org/10.1016/j.ijbiomac.2017.11.172

16. Arcidiacono , S. and Kaplan , D. L. Molecular weight distribution of chitosan isolated from Mucor rouxii under different culture and processing conditions. Biotechnol. Bioeng. , 1992 , 39(3) , 281−286.
https://doi.org/10.1002/bit.260390305

 
Back

Current Issue: Vol. 68, Issue 4, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December