headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
Vol. 68, Issue 3
Vol. 68, Issue 2
Vol. 68, Issue 1
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Criteria for modelling wave phenomena in complex systems:the case of signals in nerves; pp. 276–283

(Full article in PDF format) https://doi.org/10.3176/proc.2019.3.05


Authors

Jüri Engelbrecht, Kert Tamm, Tanel Peets

Abstract

The propagation of signals in nerves is characterized by complexity where the interactions between the electrical signal and accompanying mechanical and thermal effects must be taken into account. That is why in the modelling of wave phenomena the knowledge from physiology, physics, and mathematics must be cast into a whole. In this paper the wave phenomena in nerves are characterized from the viewpoint of complexity and interdisciplinarity, followed by the analysis of principles and criteria in the modelling of biological systems. The central part is the description of the step-by-step approach in building up a coupled mathematical model of signal propagation in axons. Attention is paid to the coupling forces which link the single waves into an ensemble. The mathematical description of the model is presented in the Appendix.

Keywords

interdisciplinarity, action potential, mechanical and thermal effects, interactions.

References

1. Andersen , S. S. , Jackson , A. D. , and Heimburg , T. Towards a thermodynamic theory of nerve pulse propagation. Prog. Neurobiol. , 2009 , 88(2) , 104–113.
https://doi.org/10.1016/j.pneurobio.2009.03.002

2. Berezovski , A. , Engelbrecht , J. , and V´an , P. Weakly nonlocal thermoelasticity for microstructured solids: microdeformation and microtemperature. Arch. Appl. Mech. , 2014 , 84(9–11) , 1249–1261.
https://doi.org/10.1007/s00419-014-0858-6

3. Clay , J. R. Axonal excitability revisited. Prog. Biophys. Mol. Biol. , 2005 , 88(1) , 59–90.
https://doi.org/10.1016/j.pbiomolbio.2003.12.004

4. Debanne , D. , Campanac , E. , Bialowas , A. , Carlier , E. , and Alcaraz , G. Axon physiology. Physiol. Rev. , 2011 , 91(2) , 555–602.
https://doi.org/10.1152/physrev.00048.2009

5. Drukarch , B. , Holland , H. A. , Velichkov , M. , Geurts , J. J. , Voorn , P. , Glas , G. , and de Regt , H.W. Thinking about the nerve impulse: a critical analysis of the electricitycentered conception of nerve excitability. Prog. Neurobiol. , 2018 , 169 , 172–185.
https://doi.org/10.1016/j.pneurobio.2018.06.009

6. Engelbrecht , J. On theory of pulse transmission in a nerve fibre. Proc. R. Soc. A Math. Phys. Eng. Sci. , 1981 , 375(1761) , 195–209.
https://doi.org/10.1098/rspa.1981.0047

7. Engelbrecht , J. Nonlinear wave motion and complexity. Proc. Estonian Acad. Sci. , 2010 , 59(2) , 66–71.
https://doi.org/10.3176/proc.2010.2.02

8. Engelbrecht , J. Complexity in engineering and natural sciences. Proc. Estonian Acad. Sci. , 2015 , 64(3) , 249–255.
https://doi.org/10.3176/proc.2015.3.07

9. Engelbrecht , J. , Berezovski , A. , and Soomere , T. Highlights in the research into complexity of nonlinear waves. Proc. Estonian Acad. Sci. , 2010 , 59(2) , 61–65.
https://doi.org/10.3176/proc.2010.2.01

10. Engelbrecht , J. , Peets , T. , and Tamm , K. Electromechanical coupling of waves in nerve fibres. Biomech. Model. Mechanobiol. , 2018 , 17(6) , 1771–1783.
https://doi.org/10.1007/s10237-018-1055-2

11. Engelbrecht , J. , Peets , T. , Tamm , K. , Laasmaa , M. , and Vendelin , M. On the complexity of signal propagation in nerve fibres. Proc. Estonian Acad. Sci. , 2018 , 67(1) , 28–38.
https://doi.org/10.3176/proc.2017.4.28

12. Engelbrecht , J. , Tamm , K. , and Peets , T. On mathematical modelling of solitary pulses in cylindrical biomembranes. Biomech. Model. Mechanobiol. , 2015 , 14(1) , 159–167.
https://doi.org/10.1007/s10237-014-0596-2

13. Engelbrecht , J. , Tamm , K. , and Peets , T. Modeling of complex signals in nerve fibers. Med. Hypotheses , 2018 , 120 , 90–95.
https://doi.org/10.1016/j.mehy.2018.08.021

14. Engelbrecht , J. , Vendelin , M. , and Maugin , G. A. Hierarchical internal variables reflecting microstructural properties: application to cardiac muscle contraction. J. Non-Equilibrium Thermodyn. , 2000 , 25(2) , 119–130.
https://doi.org/10.1515/JNETDY.2000.008

15. Érdi , P. Complexity Explained. Springer Science & Business Media , Berlin , 2007.

16. Eringen , A. C. Nonlinear Theory of Continuous Media. McGraw-Hill Book Company , New York , 1962.

17. Gavaghan , D. , Garny , A. , Maini , P. K. , and Kohl , P. Mathematical models in physiology. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. , 2006 , 364(1842) , 1099–1106.
https://doi.org/10.1098/rsta.2006.1757

18. Heimburg , T. and Jackson , A. D. On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. USA , 2005 , 102(28) , 9790–9795.
https://doi.org/10.1073/pnas.0503823102

19. Hodgkin , A. and Huxley , A. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. , 1952 , 117(4) , 500–544.
https://doi.org/10.1113/jphysiol.1952.sp004764

20. Hodgkin , A. L. The Conduction of Nervous Impulse. Liverpool University Press , 1964.

21. Kohl , P. , Crampin , E. J. , Quinn , T. A. , and Noble , D. Systems biology: an approach. Clin. Pharmacol. Ther. , 2010 , 88(1) , 25–33.
https://doi.org/10.1038/clpt.2010.92

22. Kuhn , T. S. The structure of scientific revolutions. Am. Anthropol. , 1962. 23. Lieberstein , H. On the Hodgkin-Huxley partial differential equation. Math. Biosci. , 1967 , 1(1) , 45–69.
https://doi.org/10.1016/0025-5564(67)90026-0

24. Maugin , G. A. Material Inhomogeneities in Elasticity. Chapman & Hall , London , 1993.
https://doi.org/10.1007/978-1-4899-4481-8

25. Maugin , G. A. Infernal variables and dissipative structures. J. Non-Equilibrium Thermodyn. , 1990 , 15(2) , 173–192.
https://doi.org/10.1515/jnet.1990.15.2.173

26. Maugin , G. A. and Engelbrecht , J. A thermodynamical viewpoint on nerve pulse dynamics. J. Non-Equilibrium Thermodyn. , 1994 , 19(1) , 9–23.
https://doi.org/10.1515/jnet.1994.19.1.9

27. McCulloch , A. D. and Huber , G. Integrative biological modelling in silico. In ‘In Silico’ Simulation of Biological Processes: Novartis Foundation Symposium 247 (Bock , G. and Goode , J. A. , eds). John Wiley & Sons , Chichester , 2002 , 4–25.
https://doi.org/10.1002/0470857897.ch2

28. Mueller , J. K. and Tyler , W. J. A quantitative overview of biophysical forces impinging on neural function. Phys. Biol. , 2014 , 11(5) , 051001
https://doi.org/10.1088/1478-3975/11/5/051001

29. Nagumo , J. , Arimoto , S. , and Yoshizawa , S. An active pulse transmission line simulating nerve axon. Proc. IRE , 1962 , 50(10) , 2061–2070.
https://doi.org/10.1109/JRPROC.1962.288235

30. Nicolis , G. and Nicolis , C. Foundations of Complex Systems:Emergence , Information and Predicition. World Scientific , Singapore , 2012.
https://doi.org/10.1142/9789814366618

31. Noble , D. Chair’s introduction. In ‘In Silico’ Simulation of Biological Processes: Novartis Foundation Symposium 247 (Bock , G. and Goode , J. A. , eds). JohnWiley & Sons , Chichester , 2002 , 1–3.

32. Noble , D. Biophysics and systems biology. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. , 2010 , 368(1914) , 1125–1139.
https://doi.org/10.1098/rsta.2009.0245

33. Porubov , A. V. Amplification of Nonlinear Strain Waves in Solids. World Scientific , Singapore , 2003.
https://doi.org/10.1142/5238

34. Rodeman , R. The Oxford Handbook of Interdisciplinarity. Oxford University Press , Oxford , 2017.
https://doi.org/10.1093/oxfordhb/9780198733522.001.0001

35. Scott , A. C. The Nonlinear Universe. Chaos , Emergence , Life. Springer , Berlin , Heidelberg , 2010.

36. Stewart , I. In Pursuit of the Unknown: 17 Equations That Changed the World. Profile Books , London , 2013.

37. Tamm , K. , Engelbrecht , J. , and Peets , T. Temperature changes accompanying signal propagation in axons. arXiv:1812.02296 [physics.bio-ph] , 2018.
https://doi.org/10.1515/jnet-2019-0012

38. Tasaki , I. A macromolecular approach to excitation phenomena: mechanical and thermal changes in nerve during excitation. Physiol. Chem. Phys. Med. NMR , 1988 , 20(4) , 251–268.

39. Tasaki , I. and Byrne , P. M. Heat production associated with a propagated impulse in bullfrog myelinated nerve fibers. Jpn. J. Physiol. , 1992 , 42(5) , 805–813.
https://doi.org/10.2170/jjphysiol.42.805

40. Terakawa , S. Potential-dependent variations of the intracellular pressure in the intracellularly perfused squid giant axon. J. Physiol. , 1985 , 369(1) , 229–248.
https://doi.org/10.1113/jphysiol.1985.sp015898

41. Wooley , J. C. and Lin , H. S. Catalyzing Inquiry at the Interface of Computing and Biology. The National Academies Press , Washington , 2005.

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December