ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
PHENOLS TO PORES TO ADSORPTION. A POTENTIAL ROUTE TOWARDS NEW METHODS FOR EXTRACTING VALUE FROM SHALE OIL SIDE STREAM; pp. 128–141
PDF | https://doi.org/10.3176/oil.2019.2S.04

Author
Allan Niidu
Abstract

side stream of shale oil production contains alkylresorcinols as main constituents, which could prove to be useful intermediates to highly porous and versatile materials – metal-organic frameworks (MOFs). The latter structures have been used as adsorbents for various organic and inorganic compounds, including organic sulfur containing molecules. In the current work, a pathway from phenolic compounds in shale oil toward metal-organic framework linkers was indicated and its utility was proved by using related metal-organic frameworks as effective adsorbents for sulfur from model fuels exemplified in the form of benzothiophene (BT) and isooctane, respectively.

References

1.      Kreek, K., Kriis, K., Maaten, B., Uibu, M., Mere, A., Kanger, T., Koel, M. Organic and carbon aerogels containing rare-earth metals: Their properties and application as catalysts. J. Non-Cryst. Solids. 2014, 404, 43–48.
https://doi.org/10.1016/j.jnoncrysol.2014.07.021

2.      Kamal, A., Robertson, A., Tittensor, E. Hydroxy-carbonyl compounds. Part XIV. The syntheses of some isocoumarins. J. Chem. Soc. Resumed, 1950, No. 0, 3375–3380. https://doi.org/10.1039/JR9500003375

3.      Samokhvalov, A. Adsorption on mesoporous metal–organic frameworks in solution: Aromatic and heterocyclic compounds. Chem. Eur. J., 2015, 21(47), 16726–16742.
https://doi.org/10.1002/chem.201502317

4.      Khan, N. A., Jhung, S. H. Scandium-triflate/metal-organic frameworks: Remarkable adsorbents for desulfurization and denitrogenation. Inorg. Chem., 2015, 54(23), 11498–11504.
https://doi.org/10.1021/acs.inorgchem.5b02118

5.      Ahmed, I., Jhung, S. H. Adsorptive desulfurization and denitrogenation using metal-organic frameworks. J. Hazard. Mater., 2016, 301, 259–276.
https://doi.org/10.1016/j.jhazmat.2015.08.045

6.      Hu, Z., Zhao, D. De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal–organic frameworks and membrane materials. Dalton T., 2015, 44, 19018–19040.
https://doi.org/10.1039/C5DT03359D

7.      Rubio-Martinez, M., Avci-Camur, C., Thornton, A. W., Imaz, I., Maspoch, D., Hill, M. R. New synthetic routes towards MOF production at scale. Chem. Soc. Rev., 2017, 46(11), 3453–3480.
https://doi.org/10.1039/C7CS00109F

8.      Kandiah, M., Nilsen, M. H.; Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., Larabi, C., Quadrelli, E. A., Bonino, F., Lillerud, K. P. Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem. Mater., 2010, 22(24), 6632–6640.
https://doi.org/10.1021/cm102601v

9.      DeCoste, J. B., Peterson, G. W., Jasuja, H., Glover, T. G., Huang, Y., Walton, K. S. Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. J. Mater. Chem. A, 2013, 1(18), 5642–5650.
https://doi.org/10.1039/C3TA10662D

10. Liu, X., Demir, N. K., Wu, Z., Li, K. Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc., 2015, 137(22), 6999–7002.
https://doi.org/0.1021/jacs.5b02276

11. Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., Lillerud, K. P., Lamberti, C. Disclosing the complex structure of UiO-66 metal organic framework: A synergic combination of experiment and theory. Chem. Mater., 2011, 23(7), 1700–1718.
https://doi.org/10.1021/cm1022882

12. Krtschil, U., Hessel, V., Kost, H.-J., Reinhard, D. Kolbe-Schmitt flow synthesis in aqueous solution – from lab capillary reactor to pilot plant. Chem. Eng. Technol,. 2013, 36(6), 1010–1016.
https://doi.org/10.1002/ceat.201200633

13. Tomás, R. A. F., Bordado, J. C. M., Gomes, J. F. P. p-Xylene oxidation to terephthalic acid: A literature review oriented toward process optimization and development. Chem. Rev., 2013, 113(10), 7421–7469.
https://doi.org/10.1021/cr300298j

14. Li, J.-R., Sculley, J., Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev., 2012, 112(2), 869–932.
https://doi.org/10.1021/cr200190s

15. Farrusseng, D., Aguado, S., Pinel, C. Metal–organic frameworks: opportunities for catalysis. Angew. Chem. Int. Edit., 2009, 48(41), 7502–7513.
https://doi.org/10.1002/anie.200806063

16. Crombie, L., Games, D. E., James, A. W. G. Reactions of fused and unfused α-pyrones with magnesium alkoxide, sodium alkoxide and water as the nucleophile: effects of chelation. J. Chem. Soc., Perk. 1, 1996, 22, 2715–2724.
https://doi.org/10.1039/P19960002715

17. Qu, R.-Y., Liu, Y.-C., Wu, Q.-Y., Chen, Q., Yang, G.-F. An efficient method for syntheses of functionalized 6-bulkysubstituted salicylates under microwave irradiation. Tetrahedron, 2015, 71(42), 8123–8130.
https://doi.org/10.1016/j.tet.2015.08.040

18. Fadzil, N. A. M., Rahim, M. H. A., Maniam, G. P. A brief review of para-xylene oxidation to terephthalic acid as a model of primary C–H bond activation. Chinese J. Catal., 2014, 35(10), 1641–1652.
https://doi.org/10.1016/S1872-2067(14)60193-5

19. Wuensch, C., Glueck, S. M., Gross, J., Koszelewski, D., Schober, M., Faber, K. Regioselective enzymatic carboxylation of phenols and hydroxystyrene derivatives. Org. Lett., 2012, 14(8), 1974–1977.
https://doi.org/10.1021/ol300385k

20. Wuensch, C., Schmidt, N., Gross, J., Grischek, B., Glueck, S. M., Faber, K. Pushing the equilibrium of regio-complementary carboxylation of phenols and hydroxystyrene derivatives. J. Biotechnol., 2013, 168(3), 264–270.
https://doi.org/10.1016/j.jbiotec.2013.07.017

21. Harris, C. M., Kibby, J. J., Fehlner, J. R., Raabe, A. B., Barber, T. A., Harris, T. M. Amino acid constituents of ristocetin A. J. Am. Chem. Soc., 1979, 101(2), 437–445.
https://doi.org/10.1021/ja00496a028

22. Sakurai, J., Kikuchi, T., Takahashi, O., Watanabe, K., Katoh, T. Enantioselective total synthesis of (+)-stachyflin: A potential anti-influenza A virus agent isolated from a microorganism. Eur. J. Org. Chem., 2011, 2011(16), 2948–2957.
https://doi.org/10.1002/ejoc.201100173

23. Katz, M. J., Brown, Z. J., Colon, Y. J., Siu, P. W., Scheidt, K. A., Snurr, R. Q., Hupp, J. T., Farha, O. K. A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 2013, 49(82), 9449–9451.
https://doi.org/10.1039/C3CC46105J

24. Rimoldi, M., Howarth, A. J., De Stefano, M. R., Lin, L., Goswami, S., Li, P., Hupp, J. T., Farha, O. K. Catalytic zirconium/hafnium-based metal–organic frameworks. ACS Catal., 2017, 7(2), 997–1014.
https://doi.org/10.1021/acscatal.6b02923

25. Wang, C., Volotskova, O., Lu, K., Ahmad, M., Sun, C., Xing, L., Lin, W. Synergistic assembly of heavy metal clusters and luminescent organic bridging ligands in metal–organic frameworks for highly efficient X-ray scintillation. J. Am. Chem. Soc., 2014, 136(17), 6171–6174.
https://doi.org/10.1021/ja500671h

26. Cliffe, M. J., Wan, W., Zou, X., Chater, P. A., Kleppe, A. K., Tucker, M. G., Wilhelm, H., Funnell, N. P., Coudert, F.-X., Goodwin, A. L. Correlated defect nanoregions in a metal–organic framework. Nat. Commun., 2014, 5(1), 4176–4183.
https://doi.org/10.1038/ncomms5176

27. Shearer, G. C., Chavan, S., Bordiga, S., Svelle, S., Olsbye, U., Lillerud, K. P. Defect engineering: Tuning the porosity and composition of the metal–organic framework UiO-66 via modulated synthesis. Chem. Mater., 2016, 28(11), 3749–3761.
https://doi.org/10.1021/acs.chemmater.6b00602

28. Ho, Y.-S. Second-order kinetic model for the sorption of cadmium onto tree fern: A comparison of linear and non-linear methods. Water Res., 2006, 40(1), 119–125.
https://doi.org/10.1016/j.watres.2005.10.040

29. Nouri, L., Ghodbane, I., Hamdaoui, O., Chiha, M. Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran. J. Hazard. Mater., 2007, 149(1), 115–125.
https://doi.org/10.1016/j.jhazmat.2007.03.055

30. Van de Voorde, B., Hezinova, M., Lannoeye, J., Vandekerkhove, A., Marszalek, B., Gil, B., Beurroies, I., Nachtigall, P., De Vos, D. Adsorptive desulfurization with CPO-27/MOF-74: an experimental and computational investigation. Phys. Chem. Chem. Phys., 2015, 17(16), 10759–10766.
https://doi.org/10.1039/C5CP01063B

31. Bolster, C. H., Hornberger, G. M. On the use of linearized Langmuir equations. Soil Sci. Soc. Am. J. 2007, 71(6), 1796–1806.
https://doi.org/10.2136/sssaj2006.0304

32. Bagheri, M., Masoomi, M. Y., Morsali, A. High organic sulfur removal performance of a cobalt based metal-organic framework. J. Hazard. Mater., 2017, 331, 142–149.
https://doi.org/10.1016/j.jhazmat.2017.02.037

33. Zuyi, T., Taiwei, C. On the applicability of the Langmuir equation to estimation of adsorption equilibrium constants on a powdered solid from aqueous solution. J. Colloid Interf. Sci., 2000, 231(1), 8–12.
https://doi.org/10.1006/jcis.2000.7057

34. He, W.-W., Yang, G.-S., Tang, Y.-J., Li, S.-L., Zhang, S.-R.; Su, Z.-M.,
Lan, Y.-Q. Phenyl groups result in the highest benzene storage and most efficient desulfurization in a series of isostructural metal–organic frameworks. Chem. Eur. J., 2015, 21(27), 9784–9789.
https://doi.org/10.1002/chem.201500815

 

Back to Issue