headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
Vol. 36, Issue 2S
Vol. 36, Issue 2
Vol. 36, Issue 1
» 2018
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

CHARACTERIZATION OF PYROLYSIS OF NONG’AN OIL SHALE AT DIFFERENT TEMPERATURES AND ANALYSIS OF PYROLYSATE; pp. 151–170

(Full article in PDF format) https://doi.org/10.3176/oil.2019.2S.06


Authors

JING HAN, YOUHONG SUN, WEI GUO, QIANG LI, SUNHUA DENG

Abstract

In this work, the thermal behavior of Nong’an oil shale of China was investigated and its pyrolysate analyzed in order to provide optimal pyrolysis parameters for the oil shale in-situ pyrolysis pilot project. Through thermogravimetric analysis (TGA) it was noted that the main mass loss of oil shale was in the temperature range of 310–600 °C and the maximum mass loss temperature was 465 °C. The retorting experiments showed that tem­perature had an important influence on shale oil yield and the maximum oil yield was obtained at 550 °C. The oil yield was reduced at higher tempera­tures, resulting in an increase in gas yield. According to the analysis of shale oil composition the high pyrolysis temperature could promote the formation of short-chain hydrocarbons. Meanwhile, more alkenes and aromatics and less heteroatomic compounds were found at high temperature. The long-chain hydrocarbons and heteroatomic compounds were proved to be secondary products decomposed at higher temperature. In addition, the results of nitrogen adsorption/desorption and scanning electron microscopy (SEM) indicated that the shale surface became more porous due to the decomposition of kerogen and more micro- and mesopores were found after the treatment at high temperature.

Keywords

Nong’an oil shale, pyrolysis process, shale oil, heating temperature.

References

Liu , Z. , Meng , Q. , Dong , Q. , Zhu , J. , Guo , W. , Ye , S. , Liu , R. , Jia , J. Char­acteristics and resource potential of oil shale in China. Oil Shale , 2017 , 34(1) , 15‒41.
https://doi.org/10.3176/oil.2017.1.02

2.  Feng , Z. , Jia , C. , Xie , X. , Zhang , S. , Feng , Z. , Cross , T. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin , northeast China. Basin Res. , 2010 , 22(1) , 79‒95.
https://doi.org/10.1111/j.1365-2117.2009.00445.x

3.  Wang , P. , Mattern , F. , Didenko , A. , Zhu , D. , Singer , B. , Sun , X. Tectonics and cycle system of the Cretaceous Songliao Basin: An inverted active continental margin basin. Earth-Sci. Rev. , 2016 , 159 , 82‒102.
https://doi.org/10.1016/j.earscirev.2016.05.004

4.  Bechtel , A. , Jia , J. , Strobl , S. , Sachsenhofer , R. , Liu , Z. , Gratzer , R. , Püttmann , W. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): Implications from geochemical analysis. Org. Geochem. , 2012 , 46 , 76‒95.
https://doi.org/10.1016/j.orggeochem.2012.02.003

5.  Xu , J. , Liu , Z. , Bechtel , A. , Meng , Q. , Sun , P. , Jia , J. , Cheng , L. , Song , Y. Basin evolution and oil shale deposition during Upper Cretaceous in the Songliao Basin (NE China): Implications from sequence stratigraphy and geochemistry. Int. J. Coal Geol. , 2015 , 149 , 9‒23.
https://doi.org/10.1016/j.coal.2015.07.005

6.  Hu , F. , Liu , Z. , Meng , Q. , Wang , J. , Song , Q. , Xie , W. Biomarker characterization of various oil shale grades in the Upper Cretaceous Qingshankou Formation , Southeastern Songliao Basin , NE China. Oil Shale , 2018 , 35(4) , 304‒326.
https://doi.org/10.3176/oil.2018.4.02

7.  Brandt , A. R. Converting oil shale to liquid fuels: Energy inputs and greenhouse gas emissions of the Shell in situ conversion process. Environ. Sci. Technol. , 2008 , 42(19) , 7489‒7495.
https://doi.org/10.1021/es800531f

8.  Symington , W. A. , Olgaard , D. L. , Otten , G. A. , Phillips , T. C. , Thomas , M. M. , Yeakel , J. D. ExxonMobil’s Electrofrac process for in situ oil shale conversion. In: Oil Shale: A Solution to the Liquid Fuel Dilemma. ACS Sym. Ser. , 2010 , 1032 , 185‒216.
https://doi.org/10.1021/bk-2010-1032.ch010

9.  Burnham , A. , Day , R. , Wallman , P. , McConaghy , J. , Harris , H. , Lerwick , P. , Vawter , R. In situ method and system for extraction of oil from shale. U.S. Patent 2011 , 7 ,921 ,907.

10.       Yang , D. , Elsworth , D. , Kang , Z. Q. , Zhao , Y. S. , Zheng , B. Experiments on permeability evolution with temperature of oil shale. In: Proceedings of the 46th US Rock Mechanics/Geomechanics Symposium , Chicago , IL , USA , 24–27 June 2012 , 3 , 1831–1835.

11.       Deng , S. , Wang , Z. , Gao , Y. , Gu , Q. , Cui , X. , Wang , H. Sub-critical water extraction of bitumen from Huadian oil shale lumps. J. Anal. Appl. Pyrol. , 2012 , 98 , 151‒158.
https://doi.org/10.1016/j.jaap.2012.07.011

12.       Cao , H. , Kaufman , A. J. , Shan , X. , Cui , H. , Zhang , G. Sulfur isotope constraints on marine transgression in the lacustrine Upper Cretaceous Songliao Basin , northeastern China. Palaeogeogr. Palaeocl. , 2016 , 451 , 152‒163.
https://doi.org/10.1016/j.palaeo.2016.02.041

13.       Jiang , H. , Song , L. , Cheng , Z. , Chen , J. , Zhang , L. , Zhang , M. , Hu , M. , Li , J. , Li , J. Influence of pyrolysis condition and transition metal salt on the product yield and characterization via Huadian oil shale pyrolysis. J. Anal. Appl. Pyrol. , 2015 , 112 , 230‒236.
https://doi.org/10.1016/j.jaap.2015.01.020

14.       Kok , M. V. Thermal investigation of Seyitomer oil shale. Thermochim. Acta , 2001 , 369(1‒2) , 149‒155.
https://doi.org/10.1016/S0040-6031(00)00764-4

15.       Nazzal , J. M. , Williams , P. T. Influence of temperature and steam on the products from the flash pyrolysis of Jordan oil shale. Int. J. Energ. Res. , 2002 , 26(14) , 1207‒1219.
https://doi.org/10.1002/er.845

16.       Ahmad , N. , Williams , P. T. Influence of particle grain size on the yield and composition of products from the pyrolysis of oil shales. J. Anal. Appl. Pyrol. , 1998 , 46(1) , 31‒49.
https://doi.org/10.1016/S0165-2370(98)00069-2

17.       Gai , R. , Jin , L. , Zhang , J. , Wang , J. , Hu , H. Effect of inherent and additional pyrite on the pyrolysis behavior of oil shale. J. Anal. Appl. Pyrol. , 2014 , 105 , 342‒347.
https://doi.org/10.1016/j.jaap.2013.11.022

18.       Lai , D. , Shi , Y. , Geng , S. , Chen , Z. , Gao , S. , Zhan , J.-H. , Xu , G. Secondary reactions in oil shale pyrolysis by solid heat carrier in a moving bed with internals. Fuel , 2016 , 173 , 138‒145.
https://doi.org/10.1016/j.fuel.2016.01.052

19.       Yuzbasi , N. S. , Selçuk , N. Air and oxy-fuel combustion characteristics of biomass/lignite blends in TGA-FTIR. Fuel Process. Technol. , 2011 , 92(5) , 1101‒1108.
https://doi.org/10.1016/j.fuproc.2011.01.005

20.       Le Doan , T. V. , Bostrom , N. W. , Burnham , A. K. , Kleinberg , R. L. , Pomerantz , A. E. , Allix , P. Green River oil shale pyrolysis: semi-open conditions. Energ. Fuel. , 2013 , 27(11) , 6447‒6459.
https://doi.org/10.1021/ef401162p

21.       Han , H. , Cao , Y. , Chen , S.-j. , Lu , J.-g. , Huang , C.-x. , Zhu , H.-h. , Zhan , P. , Gao , Y. Influence of particle size on gas-adsorption experiments of shales: An example from a Longmaxi Shale sample from the Sichuan Basin , China. Fuel , 2016 , 186 , 750‒757.
https://doi.org/10.1016/j.fuel.2016.09.018

22.       Josh , M. , Esteban , L. , Delle Piane , C. , Sarout , J. , Dewhurst , D. N. , Clennell , M. B. Laboratory characterisation of shale properties. J. Petrol. Sci. Eng. , 2012 , 88‒89 , 107‒124.
https://doi.org/10.1016/j.petrol.2012.01.023

23.       Niu , M. , Wang , S. , Han , X. , Jiang , X. Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures. Appl. Energ. , 2013 , 111 , 234‒239.
https://doi.org/10.1016/j.apenergy.2013.04.089

24.       Tiwari , P. , Deo , M. , Lin , C. L. , Miller , J. D. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT. Fuel , 2013 , 107 , 547‒554.
https://doi.org/10.1016/j.fuel.2013.01.006

25.       Sun , Y. , Bai , F. , Liu , B. , Liu , Y. , Guo , M. , Guo , W. , Wang , Q. , Lü , X. , Yang , F. , Yang , Y. Characterization of the oil shale products derived via topochemical reaction method. Fuel , 2014 , 115 , 338‒346.
https://doi.org/10.1016/j.fuel.2013.07.029

26.       Wang , S. , Liu , J. , Jiang , X. , Han , X. , Tong , J. Effect of heating rate on products yield and characteristics of non-condensable gases and shale oil obtained by retorting Dachengzi oil shale. Oil Shale , 2013 , 30(1) , 27‒47.
https://doi.org/10.3176/oil.2013.1.04

27.       Wang , S. , Jiang , X. , Han , X. , Tong , J. Effect of residence time on products yield and characteristics of shale oil and gases produced by low-temperature retorting of Dachengzi oil shale. Oil Shale , 2013 , 30(4) , 501‒516.
https://doi.org/10.3176/oil.2013.4.04

28.       Bake , K. D. , Pomerantz , A. E. Optical analysis of pyrolysis products of Green River oil shale. Energ. Fuel. , 2017 , 31(12) , 13345‒13352.
https://doi.org/10.1021/acs.energyfuels.7b01020

29.       Jaber , J. O. , Probert , S. D. Non-isothermal thermogravimetry and decom­position kinetics of two Jordanian oil shales under different processing con­ditions. Fuel Process. Technol. , 2000 , 63(1) , 57‒70.
https://doi.org/10.1016/S0378-3820(99)00064-8

30.       Loo , L. , Maaten , B. , Neshumayev , D. , Konist , A. Oxygen influence on Estonian kukersite oil shale devolatilization and char combustion. Oil Shale , 2017 , 34(3) , 219‒231.
https://doi.org/10.3176/oil.2017.3.02

31.       Loo , L. , Maaten , B. , Siirde , A. , Pihu , T. , Konist , A. Experimental analysis of the combustion characteristics of Estonian oil shale in air and oxy-fuel atmospheres. Fuel Process. Technol. , 2015 , 134 , 317‒324.
https://doi.org/10.1016/j.fuproc.2014.12.051

32.       Kosakowski , P. , Kotarba , M. J. , Piestrzyński , A. , Shogenova , A. , Więcław , D. Petroleum source rock evaluation of the Alum and Dictyonema Shales (Upper Cambrian–Lower Ordovician) in the Baltic Basin and Podlasie Depression (eastern Poland). Int. J. Earth Sci. , 2016 , 106(2) , 743‒761.
https://doi.org/10.1007/s00531-016-1328-x

33.       Xu , J. , Bechtel , A. , Sachsenhofer , R. F. , Liu , Z. , Gratzer , R. , Meng , Q. , Song , Y. High resolution geochemical analysis of organic matter accumulation in the Qingshankou Formation , Upper Cretaceous , Songliao Basin (NE China). Int. J. Coal Geol. , 2015 , 141142 , 23‒32.
https://doi.org/10.1016/j.coal.2015.03.003

34.       Liu , Q. , Han , X. , Li , Q. , Huang , Y. , Jiang , X. TG–DSC analysis of pyrolysis process of two Chinese oil shales. J. Therm. Anal. Calorim. , 2013 , 116(1) , 511‒517.
https://doi.org/10.1007/s10973-013-3524-2

35.       Moine , E. c. , Groune , K. , El Hamidi , A. , Khachani , M. , Halim , M. , Arsalane , S. Multistep process kinetics of the non-isothermal pyrolysis of Moroccan Rif oil shale. Energy , 2016 , 115 , Part 1 , 931‒941.
https://doi.org/10.1016/j.energy.2016.09.033

36.       Maaten , B. , Loo , L. , Konist , A. , Siirde , A. Mineral matter effect on the decomposition of Ca-rich oil shale. J. Therm. Anal. Calorim. , 2018 , 131(3) , 2087‒2091.
https://doi.org/10.1007/s10973-017-6823-1

37.       Li , M. , Zhan , J.-H. , Lai , D. , Tian , Y. , Liu , X. , Xu , G. Study on the evolution characteristic of intermediate during the pyrolysis of oil shale. J. Therm. Anal. Calorim. , 2017 , 130(3) , 2227‒2238.
https://doi.org/10.1007/s10973-017-6610-z

38.       Tiwari , P. , Deo , M. Compositional and kinetic analysis of oil shale pyrolysis using TGA–MS. Fuel , 2012 , 94 , 333‒341.
https://doi.org/10.1016/j.fuel.2011.09.018

39.       Maaten , B. , Loo , L. , Konist , A. , Pihu , T. , Siirde , A. Investigation of the evolution of sulphur during the thermal degradation of different oil shales. J. Anal. Appl. Pyrol. , 2017 , 128 , 405‒411.
https://doi.org/10.1016/j.jaap.2017.09.007

40.       Maaten , B. , Pikkor , H. , Konist , A. , Siirde , A. Determination of the total sulphur content of oil shale by using different analytical methods. Oil Shale , 2018 , 35(2) , 144‒153.
https://doi.org/10.3176/oil.2018.2.04

41.       Jia , C. , Wang , Z. , Liu , H. , Bai , J. , Chi , M. , Wang , Q. Pyrolysis behavior of Indonesia oil sand by TG-FTIR and in a fixed bed reactor. J. Anal. Appl. Pyrol. , 2015 , 114 , 250‒255.
https://doi.org/10.1016/j.jaap.2015.06.003

42.       Bai , F. , Sun , Y. , Liu , Y. , Guo , M. Evaluation of the porous structure of Huadian oil shale during pyrolysis using multiple approaches. Fuel , 2017 , 187 , 1‒8.
https://doi.org/10.1016/j.fuel.2016.09.012

43.       Wang , L. , Cao , H. Probable mechanism of organic pores evolution in shale: Case study in Dalong Formation , Lower Yangtze area , China. J. Nat. Gas Geosci. , 2016 , 1(4) , 295‒298.
https://doi.org/10.1016/j.jnggs.2016.08.005

44.       Bai , J. , Wang , Q. , Jiao , G. Study on the pore structure of oil shale during low-temperature pyrolysis. Energy Procedia , 2012 , 17 , Part B , 1689‒1696.
https://doi.org/10.1016/j.egypro.2012.02.299

45.       Cai , Y. , Liu , D. , Pan , Z. , Yao , Y. , Li , J. , Qiu , Y. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China. Fuel , 2013 , 103 , 258‒268.
https://doi.org/10.1016/j.fuel.2012.06.055

 
Back

Current Issue: Vol. 36, Issue 2S, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December