ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Crystallite size and strain calculations of hard particle reinforced composite powders (Cu/Ni/Fe–WC) synthesized via mechanical alloying; pp. 66–78
PDF | https://doi.org/10.3176/proc.2019.1.02

Authors
Aydın Şelte, Burak Özkal
Abstract

In this study, Cu–25WC, Ni–25WC, and Fe–25WC (all in wt%) composite powders were produced via mechanical alloying (MA) and characterized for their potential utilization in particulate materials based technologies. The changes in the crystallite size (D) and lattice strain (ε) during the production of WC particle reinforced Cu, Fe, and Ni composite powders via MA were investigated. The Williamson–Hall (W–H) plot analysis and fundamental parameters approach (FPA) applied with Lorentzian function were used to evaluate ε and D of matrix phases from XRD results. With increasing MA, ε values of all matrix phases showed an increase whereas D values showed a decrease. In addition to that, lattice parameters aCu and aNi changed linearly with time, and aFe displayed a slight decrease. The XRD peak belonging to the Cu (111) plane shifted towards larger 2-theta angles in the same direction. Contrary to Cu, the Fe (110) peak shifted to lower angles with MA time. However, the XRD peak belonging to the Ni (111) plane changed alternately. Similar results were obtained from both W–H plot analysis and the FPA calculations. Minimum crystallite size and maximum internal strain rates were estimated for 8 h MA’ed Cu25WC, Fe25WC, and Ni25WC composite powders as 14.63 nm and 1.39%, 7.60 nm and 1.23%, and 17.65 nm and 1.13%, respectively. Transmission electron microscope observations were found in good agreement with the crystallite size of XRD calculations.

References

   1.  Llorca-Isern, N. and Artieda-Guzmán, C. Metal-based composite powders. In Advances in Powder Metallurgy (Chang, I. and Zhao, Y., ed.). Woodhead Publishing, Cambridge, 2013, 241–272.
https://doi.org/10.1533/9780857098900.2.241

   2.  Ajayan, P. M., Schadler, L. S., and Braun, P. V. Nano­composite Science and Technology. 1st ed. Wiley-VCH, Weinheim, 2003.
https://doi.org/10.1002/3527602127

   3.  Park, S. J., Cowan, K., Johnson, J. L., and German, R. M. Grain size measurement methods and models for nanograined WC–Co. Int. J. Refract. Met. Hard Mater., 2008, 26, 152–163.
https://doi.org/10.1016/j.ijrmhm.2007.05.010

   4.  Marques, M. T., Livramento, V., Correia, J. B., Almeida, A., and Vilar, R. Study of early stages of Cu–NbC nano­composite synthesis. J. Alloys Compd., 2007, 434–435, 481–484.
https://doi.org/10.1016/j.jallcom.2006.08.307

   5.  Marques, M. T., Ferraria, A. M., Correia, J. B., Botelho do Rego, A. M., and Vilar, R. XRD, XPS and SEM characterisation of Cu–NbC nanocomposite produced by mechanical alloying. Mater. Chem. Phys., 2008, 109, 174–180.
https://doi.org/10.1016/j.matchemphys.2007.10.032

   6.  Correia, J. B. and Marques, M. T. Production of a copper-iron carbide nanocomposite via mechanical alloying. Mater. Sci. Forum, 2004, 455, 501–504.
https://doi.org/10.4028/www.scientific.net/MSF.455-456.501

   7.  Dong, S. J., Zhou, Y., Chang, B. H., and Shi, Y. W. Formation of a TiB2-reinforced copper-based composite by mechanical alloying and hot pressing. Metall. Mater. Trans. A, 2002, 33, 1275–1280.
https://doi.org/10.1007/s11661-002-0228-9

   8.  Shen, B. L., Itoi, T., Yamasaki, T., and Ogino, Y. Indentation creep of nanocrystalline Cu-TiC alloys prepared by mechanical alloying. Scripta Mater., 2000, 42, 893–898.
https://doi.org/10.1016/S1359-6462(00)00309-2
https://doi.org/10.1016/S1359-6462(00)00508-X

   9.  Yusoff, M., Othman, R., and Hussain, Z. Mechanical alloying and sintering of nanostructured tungsten carbide-reinforced copper composite and its charac­terization. Mater. Des., 2011, 32, 3293–3298.
https://doi.org/10.1016/j.matdes.2011.02.025

10.  Şelte, A. and Özkal, B. Infiltration behavior of mechanical alloyed 75 wt% Cu-25 wt% WC powders into porous WC compacts. Arch. Metall. Mater., 2015, 60. 1565–1568.
https://doi.org/10.1515/amm-2015-0272

11.  Deshpande, P. K. and Lin, R. Y. Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity. Mater. Sci. Eng. A, 2006, 418, 137–145.
https://doi.org/10.1016/j.msea.2005.11.036

12.  Takahashi, T. and Hashimoto, Y. Preparation of dispersion-strengthened coppers with NbC and TaC by mechanical alloying. Mater. Tran.s JIM, 1991, 32, 389–397.

13.  Ying, D. Y. and Zhang, D. L. Processing of Cu–Al2O3 metal matrix nanocomposite materials by using high energy ball milling. Mater. Sci. Eng. A, 2000, 286, 152–156.
https://doi.org/10.1016/S0921-5093(00)00627-4

14.  Naser, J., Riehemann, W., and Ferkel, H. Dispersion hardening of metals by nanoscaled ceramic powders. Mater. Sci. Eng. A, 1997, 234, 467–469.
https://doi.org/10.1016/S0921-5093(97)00269-4

15.  Prosviryakov, A. S. SiC content effect on the properties of Cu–SiC composites produced by mechanical alloying. J. Alloys Compd., 2015, 632, 707–710.
https://doi.org/10.1016/j.jallcom.2015.01.298

16.  Groza, J. R. and Gibeling, J. C. Principles of particle selection for dispersion-strengthened copper. Mater. Sci. Eng. A, 1993, 171, 115–125.
https://doi.org/10.1016/0921-5093(93)90398-X

17.  Zhuo, H., Tang, J., and Ye, N. A novel approach for strengthening Cu–Y2O3 composites by in situ reaction at liquidus temperature. Mater. Sci. Eng. A, 2013, 584, 1–6.
https://doi.org/10.1016/j.msea.2013.07.007

18.  Ružić, J., Stašić, J., Marković, S., Raić, K., and Božić, D. Synthesis and characterization of Cu-ZrB2 alloy produced by PM techniques. Sci. Sinter., 2014, 46, 217–224.
https://doi.org/10.2298/SOS1402217R

19.  Xing, H. W., Cao, X. M., Hu, W. P., Zhao, L. Z., and Zhang, J. S. Interfacial reactions in 3D SiC network reinforced Cu­ matrix composites prepared by squeeze casting. Mater. Lett., 2005, 59, 1563–1566.
https://doi.org/10.1016/j.matlet.2005.01.023

20.  Vyas, T. K. and Pandey, A. A review on investigation of copper matrix composite by using stir casting method. Indian J. Appl. Res., 2015, 5, 75–77.

21.  Gupta, M., Mohamed, F., and Lavernia, E. The effect of ceramic reinforcements during spray atomization and Co deposition of metal matrix composites part i: heat transfer. Metall. Trans. A, 1992, 23, 831–843.
https://doi.org/10.1007/BF02675560
https://doi.org/10.1007/BF02675561

22.  Pagounis, E. and Lindroos, V. K. Processing and properties of particulate reinforced steel matrix composites. Mater. Sci. Eng. A, 1998, 246, 221–234.
https://doi.org/10.1016/S0921-5093(97)00710-7

23.  Razavi, M., Rahimipour, M. R., Ebadzadeh, T., and Tousi, S. S. R. Synthesis of Fe–TiC nanocomposite from ilmenite concentrate via microwave heating. Bull. Mater. Sci., 2009, 32, 155–160.
https://doi.org/10.1007/s12034-009-0023-y

24.  Niu, L., Hojamberdiev, M., and Xu, Y. Preparation of in situ-formed WC/Fe composite on gray cast iron substrate by a centrifugal casting process. J. Mater. Process. Technol., 2010, 210, 1986–1990.
https://doi.org/10.1016/j.jmatprotec.2010.07.013

25.  Wang, Y., Zhang, X., Zeng, G., and Li, F. In situ production of Fe–VC and Fe–TiC surface composites by cast-sintering. Composites Part A, 2001, 32, 281–286.
https://doi.org/10.1016/S1359-835X(00)00118-4

26.  Das, K., Bandyopadhyay, T. K., and Das, S. A review on the various synthesis routes of TiC reinforced ferrous based composites. J. Mater. Sci., 2002, 37, 3881–3892.
https://doi.org/10.1023/A:1014307219963
https://doi.org/10.1023/A:1019699205003

27.  Xi, W., Peng, R. L., Wu, W., Li, N., Wang, S., and Johansson, S. Al2O3 nanoparticle reinforced Fe-based alloys synthesized by thermite reaction. J. Mater. Sci., 2012, 47, 3585–3591.
https://doi.org/10.1007/s10853-011-6204-2

28.  Karak, S. K., Majumdar, J. D., Witczak, Z., Lojkowski, W., Ciupinski, L., Kurzydłowski, K. J., and Manna, I. Evaluation of microstructure and mechanical properties of nano-Y2O3-dispersed ferritic alloy synthesized by mechanical alloying and consolidated by high-pressure sintering. Metall. Mater. Trans. A, 2013, 44, 2884–2894.
https://doi.org/10.1007/s11661-013-1627-9

29.  Fernandes, F., Ramalho, A., Loureiro, A., Guilemany, J. M., Torrell, M., and Cavaleiro, A. Influence of nano­structured ZrO2 additions on the wear resistance of Ni-based alloy coatings deposited by APS process. Wear, 2013, 303, 591–601.
https://doi.org/10.1016/j.wear.2013.04.012

30.  Suryanarayana, C., Klassen, T., and Ivanov, E. Synthesis of nanocomposites and amorphous alloys by mechanical alloying. J. Mater. Sci., 2011, 46, 6301–6315.
https://doi.org/10.1007/s10853-011-5287-0

31.  Turunen, E., Varis, T., Gustafsson, T. E., Keskinen, J., Falt, T., and Hannula, S. P. Parameter optimization of HVOF sprayed nanostructured alumina and alumina–nickel composite coatings. Surf. Coat. Technol., 2006, 200, 4987–4994,
https://doi.org/10.1016/j.surfcoat.2005.05.018

32.  Fu, C., Chan, S. H., Liu, Q., Ge, X., and Pasciak, G. Fabrication and evaluation of Ni-GDC composite anode prepared by aqueous-based tape casting method for low-temperature solid oxide fuel cell. Int. J. Hydrogen Energ., 2010, 35, 301–307.
https://doi.org/10.1016/j.ijhydene.2009.09.101

33.  Wang, H., Xia, W., and Jin, Y. A study on abrasive resistance of Ni-based coatings with a WC hard phase. Wear, 1996, 195, 47–52.
https://doi.org/10.1016/0043-1648(95)06762-0

34.  St-Georges, L. Development and characterization of composite Ni-Cr plus WC laser cladding. Wear, 2007, 263, 562–566.
https://doi.org/10.1016/j.wear.2007.02.023

35.  Lou, D., Hellman, J., Luhulima, D., Liimatainen, J., and Lindroos, V. K. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites. Mater. Sci. Eng. A, 2003, 340, 155–162.
https://doi.org/10.1016/S0921-5093(02)00173-9

36.  Gassmann, R., Nowotny, S., Luft, A., and Reitzenstein, W. Laser cladding of hard particles rich alloys. In Proceedings of International Congress on Applications of Lasers and Electro-Optics (Farson, D., Steen, W., and Miyamoto, I., eds). Laser Institute of America, Orlando, 1992, 288.
https://doi.org/10.2351/1.5058498

37.  Surender, M., Balasubramanian, R., and Basu, B. Electro­chemical behaviour of electrodeposited Ni–WC composite coatings. Surf. Coat. Tech., 2004, 187, 93.
https://doi.org/10.1016/j.surfcoat.2004.01.030

38.  Dalfard, V. M. Effect of particle size of tungsten carbide on weight percent of carbide in Ni-WC nano-composite. Int. J. Electrochem. Sci., 2012, 7, 3537–3542.

39.  Genç, A., Ayas, E., Öveçoğlu, M. L., and Turan, S. Fabrication of in situ Ni(W)–WC nano composites via mechanical alloying and spark plasma sintering. J. Alloys Compd., 2012, 542, 97–104.
https://doi.org/10.1016/j.jallcom.2012.07.085

40.  Gu, D., Zhang, G., Dai, D., Wang, H., and Shen, Y. Nanocrystalline tungsten–nickel heavy alloy reinforced by in-situ tungsten carbide: mechanical alloying preparation and microstructural evolution. Int. J. Refract. Met. Hard Mater., 2013, 37, 45–51.
https://doi.org/10.1016/j.ijrmhm.2012.10.015

41.  Fang, Z. Z., Wang, X., Ryu, T., Hwang, K. S., and Sohn, H. Y. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – a review. Int. J. Refract. Met. Hard Mater., 2009, 27, 288–299.
https://doi.org/10.1016/j.ijrmhm.2008.07.011

42.  Suryanarayana, C. and Norton, M. G. X-ray Diffraction: a Practical Approach. Plenum Press, New York, 1998.
https://doi.org/10.1007/978-1-4899-0148-4

43.  Williamson, G. K. and Hall, W. H. X-ray line broadening from filed aluminum and wolfram. Acta Metall., 1953, 1, 22–31.
https://doi.org/10.1016/0001-6160(53)90006-6

44.  Bragg, W. H. and Bragg, W. L. The reflexion of X-rays by crystals. Proc. R. Soc. Lond. A, 1913, 88, 428–438.
https://doi.org/10.1098/rspa.1913.0040

45.  Ungar, T. Microstructural parameters from X-ray diffraction peak broadening. Scripta Mater., 2004, 51, 777–781.
https://doi.org/10.1016/j.scriptamat.2004.05.007

46.  Pratapa, S. and O’Connor, B. H. Development of MgO ceramic standards for X-ray and neutron line broadening assessments. Adv. X-ray Anal., 2002, 45, 41.

47.  Kumar, R., Joardar, J., Raman, R. K. S., Raja, V. S., Joshi, S. V., and Parida, S. Effect of chromium and aluminium addition on anisotropic and microstructural characteristics of ball milled nanocrystalline iron. J. Alloys Compd., 2016, 671, 164–169.
https://doi.org/10.1016/j.jallcom.2016.02.096

48.  Tung, D. K., Manh, D. H., Phong, L. T. H., Nam, P. H., Nam, D. N. H., Anh, N. T. N., Nong, H. T. T., Phan, M. H., and Phuc, N. X. Iron nanoparticles fabricated by high-energy ball milling for magnetic hyperthermia. J. Electron Mater., 2016, 45, 2644–2650.
https://doi.org/10.1007/s11664-016-4457-x

49.  Pati, S. P. and Das, D. Interfacial magnetic phenomena of mechanosynthesized Fe nanoparticles in MnO matrix. Ceram. Int., 2014, 40, 10343–10349.
https://doi.org/10.1016/j.ceramint.2014.03.007

50.  Rane, G. K., Apel, D., Welzel, U., and Mittemeijer, E. J. The microstructural evolution and thermal stability of nanocrystalline ball-milled Ni–15 at.% W powder. J. Mater. Res., 2013, 28, 873–886.
https://doi.org/10.1557/jmr.2012.442

51.  Yazdani, A. and Zakeri, A. An insight into formation of nanostructured coatings on metallic substrates by planetary ball milling. Powder Technol., 2015, 278, 196–203.
https://doi.org/10.1016/j.powtec.2015.03.026

52.  Sharma, N., Raj, T., and Jangra, K. K. Microstructural evaluation of NiTi-powder, steatite, and steel balls after different milling conditions. Mater. Manuf. Process., 2016, 31, 628–632.
https://doi.org/10.1080/10426914.2015.1004710

53.  Bonache, V., Salvador, M. D., Busquets, D., and Segovia, E. F. Fabrication of ultrafine and nanocrystalline WC–Co mixtures by planetary milling and subsequent consolidations. Powder Metall., 2011, 54, 214–221.
https://doi.org/10.1179/174329009X449323

54.  Da Silva, F. T., Nunes, M. A. M, de Oliveira, R. M. V., da Silva, G. G., de Souza, C. P., and Gomes, U. U. Analysis of crystallite size and microdeformation crystal lattice the tungsten carbide milling in mill high energy. In 19 CBECIMAT: Proceedings of Brazilian Congress on Engineering and Materials Science. Trans Tech Publications, Brazil, 2010, 527.

55.  Back, S. H., Lee, G. H., and Kang, S. Effect of cryomilling on particle size and microstrain in a WC-Co alloy. Mater. Trans., 2005, 46, 105–110.
https://doi.org/10.2320/matertrans.46.105

56.  Popa, N. C. Microstructural properties: texture and macrostress effects. In Powder Diffraction (Dinnebier, R. E. and Billinge, S. J. L., eds). RCS Publishing, Cambridge, 2008, 332–375.
https://doi.org/10.1039/9781847558237-00332

57.  Scardi, P. Microstructural properties: lattice defects and domain size effects. In Powder Diffraction (Dinnebier, R. E. and Billinge, S. J. L., eds). RCS Publishing, Cambridge, 2008, 376–413.
https://doi.org/10.1039/9781847558237-00376

58.  Leineweber, A. and Mittemeijer, E. J. Diffraction line broadening due to lattice-parameter variations caused by a spatially varying scalar variable: its orientation dependence caused by locally varying nitrogen content in ε-FeN0.433. J. Appl. Crystallogr., 2004, 37, 123–135.
https://doi.org/10.1107/S0021889803026906

59.  Prabhu, Y. T., Rao, K. V., Kumar, V. S. S., and Kumari, B. S. X-ray analysis by Williamson-Hall and size-strain plot methods of ZnO nanoparticles with fuel variation. World J. Nano Sci. Eng., 2014, 4, 21–28.
https://doi.org/10.4236/wjnse.2014.41004

Back to Issue