ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Effects of polypropylene carbonate coating on the degradation and biocompatibility of degradable magnesium alloy AZ31; pp. 13–21
PDF | https://doi.org/10.3176/proc.2019.1.07

Authors
Zhiwei Zhao, Lirong Zhao, Xudong Shi, Jianfeng Liu, Yijun Wang, Wu Xu, Hai Sun, Zhuo Fu, Bin Liu, Shucheng Hua
Abstract

The use of magnesium alloys as degradable orthopaedic implants is limited by their rapid degradation in vivo and consequent loss of mechanical integrity before sufficient bone healing has occurred. To address this limitation, we coated the surface of AZ31 magnesium alloys with polypropylene carbonate (PPC). The obtained PPC-coated AZ31 showed reduced surface roughness, hardness, and hydrophilicity compared with bare AZ31. The PPC coating also significantly slowed the degradation of AZ31 in a simulated body fluid. The adherence and proliferation of MC3T3 osteoblastic cells cultured on PPC-coated AZ31 samples demonstrated good biocompatibility. The results of the present study indicate that application of a PPC coating may extend the functional period of AZ31 magnesium implants in vivo to allow sufficient time for bone healing and for the stimulation of new bone formation.

References

    1.  Cauley, J. A. Osteoporosis: fracture epidemiology update 2016. Curr. Opin. Rheumatol., 2017, 29, 150–156.
https://doi.org/10.1097/BOR.0000000000000365

    2.  Van Staa, T., Dennison, E., Leufkens, H., and Cooper, C. Epidemiology of fractures in England and Wales. Bone, 2001, 29, 517–522.
https://doi.org/10.1016/S8756-3282(01)00614-7

    3.  Seitz, J. M., Eifler, R., Bach, F. W., and Maier, H. Magnesium degradation products: effects on tissue and human metabolism. J. Biomed. Mater. Res. A, 2014, 102, 3744–3753.
https://doi.org/10.1002/jbm.a.35023

    4.  Niinomi, M. Recent metallic materials for biomedical applications. Metall. Mater. Trans. A, 2002, 33, 477.
https://doi.org/10.1007/s11661-002-0109-2

    5.  Sumner, D. Long-term implant fixation and stress-shielding in total hip replacement. J. Biomech., 2015, 48, 797–800.
https://doi.org/10.1016/j.jbiomech.2014.12.021

    6.  Chen, Y., Xu, Z., Smith, C., and Sankar, J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater., 2014, 10, 4561–4573.
https://doi.org/10.1016/j.actbio.2014.07.005

    7.  Niki, Y., Matsumoto, H., Suda, Y., Otani, T., Fujikawa, K., Toyama, Y., et al. Metal ions induce bone-resorbing cytokine production through the redox pathway in synoviocytes and bone marrow macrophages. Biomaterials, 2003, 24, 1447–1457.
https://doi.org/10.1016/S0142-9612(02)00531-8

    8.  Niki, Y., Matsumoto, H., Otani, T., Yatabe, T., Kondo, M., Yoshimine, F., and Toyama, Y. Screening for symp­tomatic metal sensitivity: a prospective study of 92 patients undergoing total knee arthroplasty. Bio­materials, 2005, 26, 1019–1026.
https://doi.org/10.1016/j.biomaterials.2004.03.038

    9.  Kumar, K., Gill, R., and Batra, U. Challenges and opportunities for biodegradable magnesium alloy implants. Mater. Technol., 2018, 33, 153–172.
https://doi.org/10.1080/10667857.2017.1377973

 10.  Staiger, M. P., Pietak, A. M., Huadmai, J., and Dias, G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials, 2006, 27, 1728–1734.
https://doi.org/10.1016/j.biomaterials.2005.10.003

 11.  Waizy, H., Seitz, J-M., Reifenrath, J., Weizbauer, A., Bach, F-W., Meyer-Lindenberg, A., et al. Biodegradable magnesium implants for orthopedic applications. J. Mater. Sci., 2013, 48, 39–50.
https://doi.org/10.1007/s10853-012-6572-2

 12.  Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C., and Windhagen, H. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials, 2005, 26, 3557–3563.
https://doi.org/10.1016/j.biomaterials.2004.09.049

 13.  Wang, J., Tang, J., Zhang, P., Li, Y., Wang, J., Lai, Y., and Qin, L. Surface modification of magnesium alloys developed for bioabsorbable orthopedic implants: a general review. J. Biomed. Mater. Res. B, 2012, 100, 1691–1701.
https://doi.org/10.1002/jbm.b.32707

 14.  Prabhu, D. B., Gopalakrishnan, P., and Ravi, K. Coatings on implants: study on similarities and differences between the PCL coatings for Mg based lab coupons and final components. Mater. Design, 2017, 135, 397–410.
https://doi.org/10.1016/j.matdes.2017.09.043

 15.  Ostrowski, N. J., Lee, B., Roy, A., Ramanathan, M., and Kumta, P. N. Biodegradable poly(lactide-co-glycolide) coatings on magnesium alloys for orthopedic appli­cations. J. Mater. Sci. Mater. Med., 2013, 24, 85–96.
https://doi.org/10.1007/s10856-012-4773-5

 16.  Alabbasi, A., Liyanaarachchi, S., and Kannan, M. B. Polylactic acid coating on a biodegradable magnesium alloy: an in vitro degradation study by electrochemical impedance spectroscopy. Thin Solid Films, 2012, 520, 6841–6844.
https://doi.org/10.1016/j.tsf.2012.07.090

 17.  Wong, H. M., Yeung, K. W., Lam, K. O., Tam, V., Chu, P. K., Luk, K. D., and Cheung, K. M. A bio­degradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials, 2010, 31, 2084–2096.
https://doi.org/10.1016/j.biomaterials.2009.11.111

 18.  Abdal-hay, A., Dewidar, M., and Lim, J. K. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants. Appl. Surf. Sci., 2012, 261, 536–546.
https://doi.org/10.1016/j.apsusc.2012.08.051

 19.  Chen, Y., Song, Y., Zhang, S., Li, J., Zhao, C., and Zhang, X. Interaction between a high purity magnesium surface and PCL and PLA coatings during dynamic degradation. Biomed. Mater., 2011, 6, 025005.
https://doi.org/10.1088/1748-6041/6/2/025005

 20.  Kim, S. B., Jo, J. H., Lee, S. M., Kim, H. E., Shin, K. H., and Koh, Y. H. Use of a poly(ether imide) coating to improve corrosion resistance and biocompatibility of magnesium (Mg) implant for orthopedic applications. J. Biomed. Mater. Res. A, 2013, 101, 1708–1715.
https://doi.org/10.1002/jbm.a.34474

 21.  Ulery, B. D., Nair, L. S., and Laurencin, C. T. Biomedical applications of biodegradable polymers. J. Polym. Sci. B, 2011, 49, 832–864.
https://doi.org/10.1002/polb.22259

 22.  Cao, H., McHugh, K., Chew, S. Y., and Anderson, J. M. The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. J. Biomed. Mater. Res. A, 2010, 93, 1151–1159.
https://doi.org/10.1002/jbm.a.32609

 23.  Xu, Y., Lin, L., Xiao, M., Wang, S., Smith, A. T., Sun, L., and Meng, Y. Synthesis and properties of CO2-based plastics: environmentally-friendly, energy-saving and biomedical polymeric materials. Prog. Polym. Sci., 2018, 80, 163–182.
https://doi.org/10.1016/j.progpolymsci.2018.01.006

 24.  Manavitehrani, I., Fathi, A., Wang, Y., Maitz, P. K., Mirmohseni, F., Cheng, T. L., et al. Fabrication of a biodegradable implant with tunable characteristics for bone implant applications. Biomacromolecules, 2017, 18, 1736–1746.
https://doi.org/10.1021/acs.biomac.7b00078

 25.  Xia, T., Huang, B., Ni, S., Gao, L., Wang, J., Wang, J., et al. The combination of db-cAMP and ChABC with poly(propylene carbonate) microfibers promote axonal regenerative sprouting and functional recovery after spinal cord hemisection injury. Biomed. Pharmacother., 2017, 86, 354–362.
https://doi.org/10.1016/j.biopha.2016.12.045

 26.  Zhao, J., Han, W., Chen, H., Tu, M., Huan, S., Miao, G., et al. Fabrication and in vivo osteogenesis of biomimetic poly(propylene carbonate) scaffold with nanofibrous chitosan network in macropores for bone tissue engineering. J. Mater. Sci. Mater. Med., 2012, 23, 517–525.
https://doi.org/10.1007/s10856-011-4468-3

 27.  Manavitehrani, I., Fathi, A., Wang, Y., Maitz, P. K., and Dehghani, F. Reinforced poly(propylene carbonate) composite with enhanced and tunable characteristics, an alternative for poly(lactic acid). ACS Appl. Mater. Interfaces, 2015, 7, 22421–22430.
https://doi.org/10.1021/acsami.5b06407

 28.  Oyane, A., Kim, H. M., Furuya, T., Kokubo, T., Miyazaki, T., and Nakamura, T. Preparation and assessment of revised simulated body fluids. J. Biomed. Mater. Res. A, 2003, 65, 188–195.
https://doi.org/10.1002/jbm.a.10482

 29.  Xin, Y., Hu, T., and Chu, P. In vitro studies of bio­medical magnesium alloys in a simulated physio­logical environ­ment: a review. Acta Biomater., 2011, 7, 1452–1459.
https://doi.org/10.1016/j.actbio.2010.12.004

 30.  Soujanya, G. K., Hanas, T., Chakrapani, V. Y., Sunil, B. R., and Kumar, T. S. S. Electrospun nanofibrous polymer coated magnesium alloy for biodegradable implant applications. Procedia Materials Science, 2014, 5, 817–823.
https://doi.org/10.1016/j.mspro.2014.07.333

 31.  Puleo, D. and Nanci, A. Understanding and controlling the bone–implant interface. Biomaterials, 1999, 20, 2311–2321.
https://doi.org/10.1016/S0142-9612(99)00160-X

 32.  Hao, L., Yang, H., Du, C., Fu, X., Zhao, N., Xu, S., et al. Directing the fate of human and mouse mesenchymal stem cells by hydroxyl–methyl mixed self-assembled monolayers with varying wettability. J. Mater. Chem. B, 2014, 2, 4794–4801.
https://doi.org/10.1039/C4TB00597J

 33.  Bočan, J., Maňák, J., and Jäger, A. Nanomechanical analysis of AZ31 magnesium alloy and pure magnesium correlated with crystallographic orientation. Mater. Sci. Eng. A, 2015, 644, 121–128.
https://doi.org/10.1016/j.msea.2015.07.055

 34.  Xu, W., Yagoshi, K., Koga, Y., Sasaki, M., and Niidome, T. Optimized polymer coating for magnesium alloy-based bioresorbable scaffolds for long-lasting drug release and corrosion resistance. Colloids Surf. B, 2018, 163, 100–106.
https://doi.org/10.1016/j.colsurfb.2017.12.032

 35.  Jo, J-H., Li, Y., Kim, S-M., Kim, H-E., and Koh, Y-H. Hydroxyapatite/poly(ɛ-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility. J. Biomater. Appl., 2013, 28, 617–625.
https://doi.org/10.1177/0885328212468921

 36.  Zheng, Y., Gu, X., and Witte, F. Biodegradable metals. Mater. Sci. Eng. R, 2014, 77, 1–34.
https://doi.org/10.1016/j.mser.2014.01.001

 37.  Rettig, R. and Virtanen, S. Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. J. Biomed. Mater. Res. A, 2009, 88, 359–369.
https://doi.org/10.1002/jbm.a.31887

 38.  Tie, D., Guan, R., Liu, H., Cipriano, A., Liu, Y., Wang, Q., et al. An in vivo study on the metabolism and osteogenic activity of bioabsorbable Mg–1Sr alloy. Acta Biomater., 2016, 29, 455–467.
https://doi.org/10.1016/j.actbio.2015.11.014

 39.  Xu, L. and Yamamoto, A. Characteristics and cytocompati­bility of biodegradable polymer film on magnesium by spin coating. Colloids Surf. B, 2012, 93, 67–74.
https://doi.org/10.1016/j.colsurfb.2011.12.009

 40.  Neacsu, P., Staras, A. I., Voicu, S. I., Ionascu, I., Soare, T., Uzun, S., et al. Characterization and in vitro and in vivo assessment of a novel cellulose acetate-coated Mg-based alloy for orthopedic applications. Materials, 2017, 10, 686.
https://doi.org/10.3390/ma10070686

 41.  Agarwal, S., Curtin, J., Duffy, B., and Jaiswal, S. Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface modifications. Mater. Sci. Eng. C Mater. Biol. Appl., 2016, 68, 948–963.
https://doi.org/10.1016/j.msec.2016.06.020

 42.  Muthuraj, R. and Mekonnen, T. Recent progress in carbon dioxide (CO2) as feedstock for sustainable materials development: co-polymers and polymer blends. Polymer, 2018, 145, 348–373.
https://doi.org/10.1016/j.polymer.2018.04.078

 

Back to Issue