headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
Vol. 35, Issue 4
Vol. 35, Issue 3
Vol. 35, Issue 2
Vol. 35, Issue 1
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

BIOMARKER CHARACTERIZATION OF VARIOUS OIL SHALE GRADES IN THE UPPER CRETACEOUS QINGSHANKOU FORMATION, SOUTHEASTERN SONGLIAO BASIN, NE CHINA; pp. 304–326

(Full article in PDF format) https://doi.org/10.3176/oil.2018.4.02


Authors

FEI HU, ZHAOJUN LIU, QINGTAO MENG, JIANPENG WANG, QINGLEI SONG, WENQUAN XIE

Abstract

In the Songliao Basin, northeastern China, the oil shale-bearing succession in the Upper Cretaceous Qingshankou Formation contains excellent source rocks. Oil shales with different total organic carbon (TOC) contents and oil yields developed in the lower member of the formation (K2qn1). In this study, we apply gas chromatography-mass spectrometry (GC-MS) to determine the geochemical characteristics, organic matter (OM) sources and depositional environments of various grades of oil shale. Rock-Eval pyrolysis indicates that type I kerogen is the predominant organic matter in the K2qn1 oil shale, though variability in n-alkanes, steranes and hopanoids contents implies that organic matter from a variety of sources is present. High-quality oil shales are dominated by phytoplanktonic/algal and bacterial organic matter, while lower-quality oil shales are dominated by planktonic kerogen with a minor contribution from land plants. Organic matter types can indicate a high shale oil conversion rate, and increased prospects for oil shale utilization. Oxygen-deficient bottom water conditions, related to salinity stratification, are evidenced by biomarker ratios (Pr/Ph, gammacerane index (GI)). We propose that the highest-quality oil shales were deposited under anoxic conditions, with strong salinity stratification of the water column. OM sources, redox conditions and water column salinity stratification were the key factors controlling the accumulation of high-quality oil shale in the southeastern Songliao Basin.

Keywords

biomarker, high-quality oil shale, depositional environment, organic matter accumulation, alginite.

References

1.       Feng , Z. Q. , Jia , C. Z. , Xie , X. N. , Cross , T. A. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin , northeast China. Basin Res. , 2010 , 22(1) , 79–95.
https://doi.org/10.1111/j.1365-2117.2009.00445.x

2.       Liu , Z. J. , Sun , P. C. , Jia , J. L. , Meng , Q. T. , Rong , L. Distinguishing features and their genetic interpretation of stratigraphic sequences in continental deep water setting: a case from Qingshankou Formation in Songliao Basin. Earth Sci. Front. , 2011 , 18(4) , 171–180.

3.       Ren , Y. G.. , Zhu , D. F. , Wan , C. B. , Wang , C. Natural gas accumulation rule of Xujiaweizi depression in Songliao basin and future exploration target. Pet. Geol. Oilfield Dev. Daqing , 2004 , 23(5) , 26–29 (in Chinese with English abstract).

4.       Wu , F. Y. , Sun , D. Y. , Li , H. M. , Wang , X. L. The nature of basement beneath the Songliao Basin in NE China: geochemical and isotopic constraints. Phys. Chem. Earth A: Solid Earth Geod , 2001 , 26(9–10) , 793–803.
https://doi.org/10.1016/S1464-1895(01)00128-4

5.      Bechtel , A. , Jia , J. L. , Strobl , S. A. I. , Sachsenhofer , R. F. , Liu , Z. , Gratzer , R. , Püttmann , W. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): implications from geochemical analysis. Org. Geochem. , 2012 , 46 , 76–95.
https://doi.org/10.1016/j.orggeochem.2012.02.003

6.      Liu , Z. J. , Yang , H. L. , Dong , Q. S. , Zhu , J. W. , Guo , W. , Ye , S. Q. , Liu , R. , Meng , Q. T ,. Zhang , H. L. , Gan , S. C. Oil Shale in China. Petroleum Industry Press , Beijing , 2009 , 157–167 (in Chinese with English abstract).

7.      Liu , Z. J. , Meng , Q. T. , Dong , Q. S. , Zhu , J. W. , Guo , W. , Ye , S. Q. , Liu , R. , Jia , J. L. Characteristics and resource potential of oil shale in China. Oil Shale , 2017 , 34(1) , 15–41.
https://doi.org/10.3176/oil.2017.1.02

8.      Meng , Q. T. , Liu , Z. J. , Liu , R. , Wang , Y. L. Controlling factors on the oil yield of the Upper Cretaceous oil shale in the Nongan Area , Songliao basin. Journal of Jilin University (Earth Science Edition) , 2006 , 36(6) , 963–968 (in Chinese with English abstract).

9.      Xu , J. J. , Liu , Z. J. , Bechtel , A. , Meng , Q. T. , Sun , P. C. , Jia , J. L. , Cheng , L. J. , Song , Y. Basin evolution and oil shale deposition during Upper Cretaceous in the Songliao Basin (NE China): Implications from sequence stratigraphy and geochemistry. Int. J. Coal Geol. , 2015 , 149 , 9–23.
https://doi.org/10.1016/j.coal.2015.07.005

10.   Gao , R. Q. , Cai , X. Y. The Forming Condition and Distribution Regularity of the Oil and Gas Fields in Songliao Basin. Petroleum Industry Press , Beijing , 1997 , 104–106 (in Chinese).

11.   Zhou , Y. , Littke , R. Numerical simulation of the thermal maturation , oil genera­tion and migration in the Songliao Basin , Northeastern China. Mar. Petrol. Geol. , 1999 , 16(8) , 771–792.
https://doi.org/10.1016/S0264-8172(99)00043-4

12.   Feng , Z. H. , Fang , W. , Wang , X. , Huang , C. Y. , Huo , Q. L. , Zhang , J. H. , Huang , Q. H. , Zhang , L. Microfossils and molecular records in oil shales of the Songliao Basin and implications for paleo-depositional environment. Sci. China Ser. D-Earth Sci. , 2009 , 52(10) , 1559–1571.
https://doi.org/10.1007/s11430-009-0121-0

13.   Hou , D. J. , Li , M. W. , Huang , Q. H. Marine transgression events in the gigantic freshwater lake Songliao: paleontological and geochemical evidence. Org. Geochem. , 2000 , 31(7–8) , 763–768.
https://doi.org/10.1016/S0146-6380(00)00065-6

14.   Huang , Q. , Chen , C. , Wang , P. , Han , M. , Li , X. , Wu , D. The late Cretaceous bio-evolution and anoxic events in the ancient lake in the Songliao Basin. Acta Micropalaeontol. Sin. , 1997 , 15(4) , 417–425.

15.   Sun , P. C. , Sachsenhofer , R. F. , Liu , Z. J. , Strobl , S. A. I. , Meng , Q. T. , Liu , R. , Zhen , Z. Organic matter accumulation in the oil shale-and coal-bearing Huadian Basin (Eocene; NE China). Int. J. Coal Geol. , 2013 , 105 , 1–15.
https://doi.org/10.1016/j.coal.2012.11.009

16.   Sun , P. C. Environmental Dynamics of Organic Accumulation in the Oil Shale Bearing Layers in the Upper Cretaceous , Southeast Songliao Basin (NE China). PhD Thesis , Jilin University , 2013.

17.   Jia , J. L. , Liu , Z. J. , Bechtel , A. , Strobl , S. A. I. , Sun , P. C. Tectonic and climate control of oil shale deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin , NE China). Int. J. Earth Sci. , 2013 , 102(6) , 1717–1734.
https://doi.org/10.1007/s00531-013-0903-7

18.   Xu , J. J. , Bechtel , A. , Sachsenhofer , R. F. , Liu , Z. J. , Gratzer , R. , Meng , Q. T. , Song , Y. High resolution geochemical analysis of organic matter accumulation in the Qingshankou Formation , Upper Cretaceous , Songliao Basin (NE China). Int. J. Coal Geol. , 2015 , 141–142 , 23–32.
https://doi.org/10.1016/j.coal.2015.03.003

19.   Jia , J. L. Research on the Recognition and Resource Evaluation of the Upper Cretaceous Oil Shale Based on Geochemistry-Geophysics Technique in the Songliao Basin (NE , China). PhD Thesis , Jilin University , 2012.

20.   Tissot , B. T. , Welte , D. H. Petroleum Formation and Occurrence. Second Revised and Enlarged Edition , Springer-Verlag , Berlin , 1984.
https://doi.org/10.1007/978-3-642-87813-8

21.   Moldowan , J. M. , Sundararaman , P. , Schoell , M. Sensitivity of biomarker properties to depositional environment and/or source input in the Lower Toarcian of SW-Germany. Org. Geochem. , 1986 , 10(4–6) , 915–926.
https://doi.org/10.1016/S0146-6380(86)80029-8

22.   Peters , K. E. , Walters , C. C. , Moldowan , J. M. The Biomarker Guide. Volume 1: Biomarkers and Isotopes in the Environment and Human History. Volume 2: Biomarkers and Isotopes in Petroleum Exploration and Earth History. Second Edition , Cambridge University Press , New York , NY , 2005.

23.   Mi , J. K. , Zhang , S. C. , Hu , G.. Y. , He , K. Geochemistry of coal-measure source rocks and natural gases in deep formations in Songliao Basin , NE China. Int. J. Coal Geol. , 2010 , 84(3–4) , 276–285.
https://doi.org/10.1016/j.coal.2010.09.009

24.   Jia , J. L. , Bechtel , A. , Liu , Z. J. , Strobl , S. A. I. , Sun , P. C. , Sachsenhofer , R. F. Oil shale formation in the Upper Cretaceous Nenjiang Formation of the Songliao Basin (NE China): Implications from organic and inorganic geo­chemical analyses. Int. J. Coal Geol. , 2013 , 113 , 11–26.
https://doi.org/10.1016/j.coal.2013.03.004

25.   Li , S. Q. , Chen , F. K. , Siebel , W. , Wu , J. D. , Zhu , X. Y. , Shan , X. L. , Sun , X. M. Late Mesozoic tectonic evolution of the Songliao basin , NE China: Evidence from detrital zircon ages and Sr–Nd isotopes. Gondwana Res. , 2012 , 22(3–4) , 943–955.
https://doi.org/10.1016/j.gr.2012.04.002

26.   Fildani , A. , Hanson , A. D. , Chen , Z. Z. , Arriola , P. R. Geochemical charac­teristics of oil and source rocks and implications for petroleum systems , Talara basin , northwest Peru. AAPG Bull. , 2005 , 89(11) , 1519–1545.
https://doi.org/10.1306/06300504094

27.   Espitalié , J. , Marquis , F. , Barsony , I. Geochemical logging. Analytical Pyro­lysis , 184 , 276–304.

28.   Langford , F. F. , Blanc-Valleron , M. Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydrocarbons vs. total organic carbon. AAPG Bulletin , 1990 , 74(6) , 799–804.

29.   Bray , E. E. , Evans , E. D. Distribution of n-paraffins as a clue to recognition of source beds. Geochim. Cosmochim. Ac. , 1961 , 22(1) , 2–15.
https://doi.org/10.1016/0016-7037(61)90069-2

30.   Cranwell , P. A. Organic geochemistry of Cam Loch (Sutherland) sediments. Chem. Geol. , 1977 , 20 , 205–221.
https://doi.org/10.1016/0009-2541(77)90044-4

31.   Ficken , K. J. , Li , B. , Swain , D. L. , Eglinton , G. An n-alkane proxy for the sedi­mentary input of submerged/floating freshwater aquatic macrophytes. Org. Geo­chem. , 2000 , 31(7–8) , 745–749.

32.   Eglinton , G. , Hamilton , R. J. Leaf epicuticular waxes. Science , 1967 , 156(3780) , 1322–1335.
https://doi.org/10.1126/science.156.3780.1322

33.   Didyk , B. M. , Simoneit , B. R. T. , Brassell , S. C. , Eglinton , G. Organic geo­chemical indicators of palaeoenvironmental conditions of sedimentation. Nature , 1978 , 272(5650) , 216–222.
https://doi.org/10.1038/272216a0

34.   Volkman , J. K. , Maxwell , J. R. Acyclic isoprenoids as biological markers. In: Biological Markers in the Sedimentary Record (Johns , R. B. , ed.). Elsevier , Amsterdam , 1986 , 1–42.

35.   Ten Haven , H. L. , de Leeuw , J. W. , Rullkötter , J. , Sinninghe Damsté , J. S. Restricted utility of the pristane/phytane ratio as a palaeoenvironmental indicator. Nature , 1987 , 330(6149) , 641–643.
https://doi.org/10.1038/330641a0

36.   Connan , J. , Cassou , A. M. Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels. Geochim. Cosmochim. Ac. , 1980 , 44(1) , 1–23.
https://doi.org/10.1016/0016-7037(80)90173-8

37.   Volkman , J. K. , Barrett , S. M. , Blackburn , S. I. , Mansour , M. P. , Sikes , E. L. , Gelin , F. Microalgal biomarkers: A review of recent research developments. Org. Geochem. , 1998 , 29(5–7) , 1163–1179.
https://doi.org/10.1016/S0146-6380(98)00062-X

38.   Grantham , P. J. , Wakefield , L. L. Variations in the sterane carbon number dis­tributions of marine source rock derived crude oils through geological time. Org. Geochem. , 1988 , 12(1) , 61–73.
https://doi.org/10.1016/0146-6380(88)90115-5

39.   Palmer , S. E. Hydrocarbon source potential of organic facies of the lacustrine Elko Formation (Eocene/Oligocene) , northeast Nevada. In: Hydrocarbon Source Rocks of the Greater Rocky Mountain Region (Woodward , J. , Meissner , F. F. , Clayton , J. L. , eds.). Rocky Mountain Association of Geologists , Denver , Colorado , 1984 , 491–500.

40.   Peters , K. E. , Moldowan , J. M. , Driscole , A. R. , Demaison , G. J. Origin of Beatrice oil by co-sourcing from Devonian and Middle Jurassic source rocks , inner Moray Firth , United Kingdom. AAPG Bull. , 1989 , 73(4) , 454–471.

41.   Peters , K. E. , Snedden , J. W. , Sulaeman , A. , Sarg , J. F. , Enrico , R. J. A new geochemical-sequence stratigraphic model for the Mahakam Delta and Makassar Slope , Kalimantan , Indonesia. AAPG Bull. , 2000 , 84(1) , 12–44.

42.   Hunt , J. M. Petroleum Geochemistry and Geology. Freeman and Company , 1996 , 10–121.

43.   Mackenzie , A. S. , Brassell , S. C. , Eglinton , G. , Maxwell , J. R. Chemical fossils: the geological fate of steroids. Science , 1982 , 217(4559) , 491–504.
https://doi.org/10.1126/science.217.4559.491

44.   Peters , K. E. , Moldowan , J. M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall , Englewood Cliffs , 1993.

45.   Schoell , M. , Hwang , R. J. , Carlson , R. M. K. , Welton , J. E. Carbon isotopic composition of individual biomarkers in gilsonites (Utah). Org. Geochem. , 1994 , 21(6–7) , 673–683.
https://doi.org/10.1016/0146-6380(94)90012-4

46.   Grice , K. , Schouten , S. , Peters , K. E. , Sinninghe Damsté , J. S. Molecular iso­topic characterisation of hydrocarbon biomarkers in Palaeocene–Eocene evaporitic , lacustrine source rocks from the Jianghan Basin , China. Org. Geo­chem. , 1998 , 29(5–7) , 1745–1764.

47.   Peters , K. E. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin , 1986 , 70 , 318–329.

48.          Strobl , S. A. I. , Sachsenhofer , R. F. , Bechtel , A. , Meng , Q. T , Sun , P. C. Deposi­tion of coal and oil shale in NE China: The Eocene Huadian Basin compared to the coeval Fushun Basin. Mar. Petrol. Geol. , 2015 , 64 , 347–362.
https://doi.org/10.1016/j.marpetgeo.2015.03.014

 
Back

Current Issue: Vol. 36, Issue 2S, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December