headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
Vol. 35, Issue 4
Vol. 35, Issue 3
Vol. 35, Issue 2
Vol. 35, Issue 1
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

ACTIVATION OF OIL SHALE ASHES FOR SULFUR CAPTURE; 375–385

(Full article in PDF format) https://doi.org/10.3176/oil.2018.4.07


Authors

OLEV TRASS, REIN KUUSIK, TIIT KALJUVEE

Abstract

Ash reactivation technology using the Szego MillTM for grinding ashes with water, previously presented** at the Clearwater Clean Energy Conference in Florida, USA, June 2018, is now being applied to the activation of ashes from oil shale combustion.    For coal ashes, typically from fluidized bed combustion (FBC), limestone has been added as a source of calcium. In typical oil shales, there is a great deal of calcium carbonate present naturally. In an FBC boiler, there is enough time for sulfur adsorption, but with pulverized firing, that is not the case. Thus, it is necessary to remove the sulfur dioxide from the flue gases.    At the Eesti Power Plant in Narva, Estonia, the Alstom-developed Novel Integrated Desulfurization (NID) reactor system is used and some additional lime is added since much of the original calcium has been encapsulated at the high combustion temperature in the furnaces. Several tests using cyclone ash from that plant, activated with the Szego Mill, have been carried out with good results. The initial publication has compared the characteristics of activated ash and commercial lime and established their importance for sulfur capture. The performance results indicate that, per unit free CaO, well-activated ash is at least as good as the purchased lime, but three times more is needed due to the lower CaO content.    Further testing is planned, both in the laboratory and, it is hoped, also at the Power Plant in Narva. As use of oil shale is increasing in various countries, the results anticipated should find broader utilization.



TM Szego MillTM is a trademark of General Comminution Inc. for its planetary ring-roller mills.

**             Presented by the Corresponding Author of the current article.

Keywords

oil shale ashes, ashes activation, sulfur capture, flue gases.

References

1.      Ots , A. Oil Shale Fuel Combustion Technology. SC Estonian Energy , Tallinn , 2006.

2.      Kaljuvee , T. , Trass , O. , Pihu , T. , Konist , A. , Kuusik , R. Activation and reactivity of Estonian oil shale cyclone ash towards SO2 binding. J. Therm. Anal. Calorim. , 2015 , 121(1) , 19‒28.
https://doi.org/10.1007/s10973-014-4308-z

3.      Harvie , B. A. Historical review paper. The shale-oil industry in Scotland 1858‒1962. I: Geology and history. Oil Shale , 2010 , 27(4) , 354‒358.
https://doi.org/10.3176/oil.2010.4.08

4.      Urov , K. , Sumberg , A. Characteristics of oil shales and shale-like rocks of known deposits and outcrops. Monograph. Oil Shale , 1999 , 16(3) , 1‒64.

5.      Raukas , A. , Punning , J.-M. Environmental problems in the Estonian oil shale industry. Energy Environ. Sci. , 2009 , 2(2) , 723‒728.
https://doi.org/10.1039/b819315k

6.      Trass , O. Characterization and preparation of biomass , oil shale and coal-based feedstocks. In: Advances in Clean Hydrocarbon Fuel Processing (Rashid Khan , M. , ed) , Ch. 1 , Woodhead Publ. , Oxford , UK , 2011.
https://doi.org/10.1533/9780857093783.1.3

7.      Anthony , E. J. , Granatstein , D. L. Sulfation phenomena in fluidized bed com­bustion systems. Prog. Energ. Combust. Sci. , 2001 , 27(2) , 215‒236.
https://doi.org/10.1016/S0360-1285(00)00021-6

8.      Trass , O. , Delibas , C. , Anthony , E. J. Efficient reactivation of fluidized bed combustor ashes: Test results from a 35 MWt utility boiler. In: Proc. 9th Inter­national Conference on Circulating Fluidized Beds , CFB-9 , Hamburg , Germany , May 13‒16 , 2008 , 869‒874.

9.      Anthony , E. J. , MacKenzie , A. , Trass , O. , Gandolfi , E. , Iribarne , A. P. , Iribarne , J. V. , Burwell , S. M. Advanced fluidized bed combustion sorbent reactivation technology. Ind. Eng. Chem. Res. , 2003 , 42(6) , 1162‒1173.
https://doi.org/10.1021/ie020305h

10. Trass , O. , Gandolfi , E. , Anthony , E. J. Ash Reactivation , U.S. Patent No. 7 , 323 , 021 B2 , 2008.

11. Trass , O. Efficient reactivation of fluidized bed combustor ashes: A simplified procedure. 41st International Technical Conference on Clean Coal & Fuel Systems , June 6 , 2016 , Clearwater , FL.

12. Trass , O. , Papachristodoulou , G. L. , Gandolfi , E. A. J. Wet grinding of coal in the Szego mill: Limiting predictions and experimental results. Coal Prep. , 1995 , 16(3‒4) , 179‒201.
https://doi.org/10.1080/07349349508905251

13. Trass , O. Reactivation of Fluidized Bed Combustor Ashes – Economic Evalua­tion and Implementation. Proc. 29th Intl. Techn. Conf. on Clean Coal & Fuel Systems , April 18–22 , 2004 , Clearwater , FL.

 
Back

Current Issue: Vol. 36, Issue 2S, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December