ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Combined effect of heavy metals on the activated sludge process; pp. 305–314
PDF | https://doi.org/10.3176/proc.2018.4.02

Authors
Erki Lember, Vitali Retšnoi, Karin Pachel, Enn Loigu
Abstract

Migration of heavy metals in the environment is a serious problem for wastewater treatment plants (WWTP) and the environment as a whole. The combined effect of eight heavy metals on the biological wastewater treatment process was analysed in this research. The heavy metals examined were Cd, Pb, Zn, Cu, Ni, Cr, Co, and Mn. In order to evaluate their effect, mathematical models were created, taking into account the hydraulic retention time, the load of heavy metals (HeM), temperature, and the air consumption in aeration tanks in biological treatment. The modelling demonstrated that a 1 kg/d increase in the HeM reduced the nitrogen removal efficiency by 1.05% and the nitrification efficiency by 1.04%. Taking into account the variability of the HeM, this constituted a 5.68% change in the nitrogen removal efficiency for the examined WWTP. The air consumption in aeration tanks was taken as a basis for the assessment of the effect of the HeM on the entire biological treatment process, as a substantial part of the oxygen used for biological treatment is consumed by microorganisms and the inhibitory effect is observed as a decrease in the air consumption. Oxygen is consumed for the degradation of organic matter and nitrification. The modelling results showed that a 1 kg/d increase in the HeM reduced the air consumption by 9300 m3/d in the aeration tanks due to the inhibition, causing a decrease in treatment efficiency.

References

   1.  Men, C., Liu, R., Xu, F. Wang, Q., Guo, L., and Shen, Z. Pollution characteristics, risk assessment, and source apportionment of heavy metals in road dust in Beijing, China. Sci. Total Environ., 2018, 612, 138–147.
https://doi.org/10.1016/j.scitotenv.2017.08.123

   2.  Zhang, Q-Q., Ying, G-G., Pan, C-G., Liu, Y-S., and Zhao, J-L. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance. Environ. Sci. Technol., 2015, 49, 6772–6782.
https://doi.org/10.1021/acs.est.5b00729

   3.  Chowdhury, S., Mazumder, M. A. J., Al-Attas, O., and Husain, T. Heavy metals in drinking water: occurrences, implications, and future needs in developing countries. Sci. Total Environ., 2016, 569–570, 476–488.
https://doi.org/10.1016/j.scitotenv.2016.06.166

   4.  Egodawatta, Y., Ma, P., McGree, J., Liu, A., and Goonetilleke, A. Human health risk assessment of heavy metals in urban stormwater. Sci. Total Environ., 2016, 557–558, 764–772.

   5.  Bernard, E., Jimoh, A., and Odigure, J. O. Heavy metals removal from industrial wastewater by activated carbon prepared from coconut shell. Res. J. Chem. Sci., 2013, 3, 3–9.

   6.  Fang, L., Li, L., Qu, Z., Xu, H., Xu, J., and Yan, N. A novel method for the sequential removal and separation of multiple heavy metals from wastewater. J. Hazard. Mater., 2018, 342, 617–624.
https://doi.org/10.1016/j.jhazmat.2017.08.072

   7.  Goonetilleke, A., Liu, A., Managi, S., Wilson, C., Gardner, T., Bandala, R., et al. Stormwater reuse, a viable option: fact or fiction? Econ. Anal. Policy, 2017, 56, 14–17.
https://doi.org/10.1016/j.eap.2017.08.001

   8.  Wu, C., Zhou, Y., Zhang, S., Xu, M., and Song, J. The effect of toxic carbon source on the reaction of activated sludge in the batch reactor. Chemosphere, 2018, 194, 784–792.
https://doi.org/10.1016/j.chemosphere.2017.12.075

   9.  Kobielska, P. A., Howarth, A. J., Farha, O. K., and Nayak, S. Metal–organic frameworks for heavy metal removal from water. Coord. Chem. Rev., 2018, 358, 92–107.
https://doi.org/10.1016/j.ccr.2017.12.010

10.  Napa, Ü. Heavy Metals in Estonian Coniferous Forests. Dissertationes Geographicae Universitatis Tartuensis, 65. University of Tartu Press, 2017.

11.  Gunawardana, C., Goonetilleke, A., Egodawatta, P., Dawes, L., and Kokot, S. Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere, 2012, 87, 163–170.
https://doi.org/10.1016/j.chemosphere.2011.12.012Get

12.  Charters, F. J., Cochrane, T. A., and O’Sullivan, A. D. Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate. Sci. Total Environ., 2016, 550, 265–272.
DOI: 10.1016/j.scitotenv.2016.01.093

13. Pan, H., Lu, X., and Lei, K. A comprehensive analysis of heavy metals in urban road dust of Xi’an, China: contamination, source apportionment and spatial distribution. Sci. Total Environ., 2017, 609, 1361–1369
DOI:10.1016/j.scitotenv.2017.08.004 

14.  Bauhaus–Universität Weimar. Abwasserbehandlung: Gewässerbelastung, Bemessungsgrundlagen, Mechanische Verfahren und Biologische Verfahren, Reststoffe aus der Abwasserbehandlung, Kleinkläranlagen. VDG, Weimar, 2014.

15.  Ullah, H., Noreen, S., Fozia, A. R., Waseem, A., Zubair, S., Adnan, M., and Ahmad, I. Comparative study of heavy metals content in cosmetic products of different countries marketed in Khyber Pakhtunkhwa, Pakistan. Arab. J. Chem., 2017, 10, 10–18.

16.  Sani, M., Gaya, B., and Abubakar, F. A. Determination of some heavy metals in selected cosmetic products sold in Kano metropolis, Nigeria. Toxicol. Reports, 2016, 3, 866–869.
https://doi.org/10.1016/j.toxrep.2016.11.001

17.  Vabariigi Valitsus. Reovee puhastamise ning heit- ja sademevee suublasse juhtimise kohta esitatavad nõuded, heit- ja sademevee reostusnäitajate piirmäärad ning nende nõuete täitmise kontrollimise meetmed. RT I, 16.12.2016, 6. https://www.riigiteataja.ee/akt/116122016006 (accessed 2017-02-10).

18.  González-Acevedo, Z. I., García-Zarate, M. A., Núñez-Zarco, E. A., and Anda-Martín, B. I. Heavy metal sources and anthropogenic enrichment in the environ­ment around the Cerro Prieto Geothermal Field, Mexico. Geothermics, 2018, 72, 170–181.
https://doi.org/10.1016/j.geothermics.2017.11.004

19.  Tahri, M., Larif, M., Bachiri, B., Kitanou, S., Rajib, B., Benazouz, K., et al. Characterization of heavy metals and toxic elements in raw sewage and their impact on the secondary treatment of the Marrakech wastewater treatment plant. J. Mater. Environ. Sci., 2017, 8, 2311–2321.

20.  Henze, M., Loosdrecht, C. M., Ekama, A. G., and Brdjanovic, D. Biological Wastewater Treatment. IWA Publishing, London, 2011.

21.  Hartmann, S., Skrobankova, H., and Drozdova, J. Inhibition of activated sludge respiration by heavy metals. In Proceedings of the 2013 International Conference on Environment, Energy, Ecosystems and Development, 2013, 231–235.

22.  Antoniou, P., Hamilton, J., Koopman, B., Jain, R., Holloway, B., Lyberatos, G., and Svoronos, S. A. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria. Water Res., 1990, 24, 97–101.
https://doi.org/10.1016/0043-1354(90)90070-M

23.  United States Environmental Protection Agency. Process Design Manual for Nitrogen Control. Office of Technology Transfer, Washington D.C., 1973.

24.  Raud, M., Lember, E., Jõgi, E., and Kikas, T. Nitrosomonas sp. based biosensor for ammonium nitrogen measurement in wastewater. Biotechnol. Bioprocess Eng., 2013, 18, 1016–1021.
https://doi.org/10.1007/s12257-013-0078-x

25.  Rittmann, B. E. and McCarty, P. L. Environmental Bio­technology: Principles and Applications. Tata McGraw Hill Education Private Limited, New Delhi, 2012.

26.  Donnachie, R. L., Johnson, A. C., Moeckel, C., Pereira, M. G., and Sumpter, J. P. Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK. Environ. Pollut., 2014, 194, 17–23.
https://doi.org/10.1016/j.envpol.2014.07.008

27.  Quintana, V., Olalla-Herrera, M., Ruiz-López, M. D., Moreno-Montoro, M., and Navarro-Alarcón, M. Study of the effect of different fermenting microorganisms on the Se, Cu, Cr, and Mn contents in fermented goat and cow milks. Food Chem., 2015, 188, 234–239.
https://doi.org/10.1016/j.foodchem.2015.05.008

28.  Cai, X., Zhang, B., Liang, Y., Zhang, J., Yan, Y., Chen, X., et al. Study on the antibacterial mechanism of copper ion- and neodymium ion-modified α-zirconium phosphate with better antibacterial activity and lower cytotoxicity. Colloids Surfaces B, 2015, 132, 281–289.
https://doi.org/10.1016/j.colsurfb.2015.05.027

29.  Oviedo, M. D. C., Márquez, D. S., and Alonso, J. M. Q. Toxic effects of metals on microbial activity in the activated sludge process. Chem. Biochem. Eng. Q., 2002, 16, 139–144.

30.  Huang, J., Yuan, F., Zeng, G., Li, X., Gu, Y., Shi, L., et al. Influence of pH on heavy metal speciation and removal from wastewater using micellar enhanced ultrafiltration. Chemosphere, 2016, 173, 199–206.
https://doi.org/10.1016/j.chemosphere.2016.12.137

31.  Ong, S. A., Toorisaka, E., Hirata, M., and Hano, T. Adsorption and toxicity of heavy metals on activated sludge. ScienceAsia, 2010, 36, 204–209.
https://doi.org/10.2306/scienceasia1513-1874.2010.36.204

32.  Hammaini, A., González, F., Ballester, A., Blázquez, M. L., and Muñoz, J. A. Biosorption of heavy metals by activated sludge and their desorption characteristics. J. Environ. Manage., 2007, 84, 419–426.
https://doi.org/10.1016/j.jenvman.2006.06.015

33.  Montgomery, D. C. and Runger, G. C. Applied Statistics and Probability for Engineers. John Wiley & Sons, New York, 2003.

34.  Özbelge, T. A., Özbelge, H. O., and Altinten, P. Effect of acclimatization of microorganisms to heavy metals on the performance of activated sludge process. J. Hazard. Mater., 2007, 142, 332–339.
https://doi.org/10.1016/j.jhazmat.2006.08.031

35.  You, S. J., Tsai, Y. P., and Huang, R. Y. Effect of heavy metals on nitrification performance in different activated sludge processes. J. Hazard. Mater., 2009, 165, 987–994.
https://doi.org/10.1016/j.jhazmat.2008.10.112

Back to Issue