headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
Vol. 67, Issue 4
Vol. 67, Issue 3
Vol. 67, Issue 2
Vol. 67, Issue 1
» 2017
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Gas sensing capability of spray deposited Al-doped ZnO thin films; pp. 124–130

(Full article in PDF format) https://doi.org/10.3176/proc.2018.2.02


Authors

Jako S. Eensalu, Atanas Katerski, Arvo Mere, Malle Krunks

Abstract

Aluminium-doped zinc oxide thin films were deposited from zinc acetylacetonate and aluminium acetylacetonate at various aluminium concentrations and deposition temperatures by ultrasonic spray pyrolysis. The structural and morphological properties and elemental composition of these films were studied by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy, respectively. The gas sensing properties were studied by a two-point probe in O2/99% N2 and H2/97% Ar at operating temperatures of 60, 80, and 100 °C. The films were composed of hexagonal wurtzite-type zinc oxide. The surface morphology of the films depends on the amount of aluminium doping. The hydrogen sensing capability of aluminium-doped zinc oxide thin films deposited from 5 at% Al/Zn solution decreased from 11% to 5.5% as deposition temperature was increased from 280 to 400 °C, but the stability improved by an order of magnitude. The highest sensor response (8%) to 3 vol% H2 in Ar was observed at an operating temperature of 100 °C in the film deposited at a substrate temperature of 400 °C from the solution containing 2 at% Al/Zn. Aluminium doping above 2 at% Al/Zn in the solution reduced film resistance by up to two orders of magnitude and sensor response decreased to 3% at 100 °C. Response times as low as 3 s were observed when detecting hydrogen at operating temperatures 60–100 °C.

Keywords

gas sensing technology, Al-doped ZnO, thin film, ultrasonic spray pyrolysis, gas response.

References

    1.  Gu , H. , Wang , Z. , and Hu , Y. Hydrogen gas sensors based on semiconductor oxide nanostructures. Sensors , 2012 , 12 , 5517–5550.
https://doi.org/10.3390/s120505517

    2.  Barsan , N. , Koziej , D. , and Weimar , U. Metal oxide-based gas sensor research: How to? Sens. Actuators B , 2007 , 121 , 18–35.
https://doi.org/10.1016/j.snb.2006.09.047

    3.  Minami , T. Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. , 2005 , 20 , S35.
https://doi.org/10.1088/0268-1242/20/4/004

    4.  Ravichandran , K. , Jabena Begum , N. , Snega , S. , and Sakthivel , B. Properties of sprayed aluminum-doped zinc oxide films – a review. Mater. Manuf. Process. , 2014 , 31 , 1411–1423.
https://doi.org/10.1080/10426914.2014.930961

    5.  Seeber , W. T. , Abou-Helal , M. O. , Barth , S. , Beil , D. , Höche , T. , Afify , H. H. , and Demian , S. E. Transparent semiconducting ZnO:Al thin films prepared by spray pyrolysis. Mater. Sci. Semicond. Process. , 1999 , 2 , 45–55.
https://doi.org/10.1016/S1369-8001(99)00007-4

    6.  Müller , J. , Rech , B. , Springer , J. , and Vanecek , M. TCO and light trapping in silicon thin film solar cells. Sol. Energy , 2004 , 77 , 917–930.
https://doi.org/10.1016/j.solener.2004.03.015

    7.  Özgür , Ü. , Alivov , Y. I. , Liu , C. , Teke , A. , Reshchikov , M. A. , Doğan , S. , et al. A comprehensive review of ZnO materials and devices. J. Appl. Phys. , 2005 , 98 , 041301.
https://doi.org/10.1063/1.1992666

    8.  Teimoori , F. , Khojier , K. , and Dehnavi , N. Z. On the dependence of H2 gas sensitivity of ZnO thin films on film thickness. Procedia Mater. Sci. , 2015 , 11 , 474–479.
https://doi.org/10.1016/j.mspro.2015.11.061

    9.  Hassan , J. J. , Mahdi , M. A. , Chin , C. W. , Abu-Hassan , H. , and Hassan , Z. Room temperature hydrogen gas sensor based on ZnO nanorod arrays grown on a SiO2/Si substrate via a microwave-assisted chemical solution method. J. Alloys Compd. , 2013 , 546 , 107–111.
https://doi.org/10.1016/j.jallcom.2012.08.040

 10.  Galstyan , V. , Comini , E. , Baratto , C. , Faglia , G. , and Sberveglieri , G. Nanostructured ZnO chemical gas sensors. Ceram. Int. , 2015 , 41 , 14239–14244.
https://doi.org/10.1016/j.ceramint.2015.07.052

 11.  Huang , B. R. , and Lin , J. C. A facile synthesis of ZnO nanotubes and their hydrogen sensing properties. Appl. Surf. Sci. , 2013 , 280 , 945–949.
https://doi.org/10.1016/j.apsusc.2013.05.112

 12.  Tonezzer , M. and Iannotta , S. H2 sensing properties of two-dimensional zinc oxide nanostructures. Talanta , 2014 , 122 , 201–208.
https://doi.org/10.1016/j.talanta.2014.01.051

 13.  Prajapati , C. S. , Kushwaha , A. , and Sahay , P. P. Effect of Al dopants on the structural , optical and gas sensing properties of spray-deposited ZnO thin films. Mater. Chem. Phys. , 2013 , 142 , 276–285.
https://doi.org/10.1016/j.matchemphys.2013.07.015

 14.  Pati , S. , Maity , A. , Banerji , P. , and Majumder , S. B. Qualitative and quantitative differentiation of gases using ZnO thin film gas sensors and pattern recognition analysis. Analyst , 2014 , 139 , 1796–1800.
https://doi.org/10.1039/c3an02021e

 15.  Basu , S. and Dutta , A. Room-temperature hydrogen sensors based on ZnO. Mater. Chem. Phys. , 1997 , 47 , 93–96.
https://doi.org/10.1016/S0254-0584(97)80035-1

 16.  Crossay , A. , Buecheler , S. , Kranz , L. , Perrenoud , J. , Fella , C. M. , Romanyuk , Y. E. , and Tiwari , A. N. Spray-deposited Al-doped ZnO transparent contacts for CdTe solar cells. Sol. Energy Mater. Sol. Cells , 2012 , 101 , 283–288.
https://doi.org/10.1016/j.solmat.2012.02.008

 17.  Bang , J. H. , Didenko , Y. T. , Helmich , R. J. , and Suslick , K. S. Nanostructured materials through ultrasonic spray pyrolysis. Material Matters , 2010 , 7 , 15–20.

 18.  Krunks , M. and Mellikov , E. Zinc oxide thin films by the spray pyrolysis method. Thin Solid Films , 1995 , 270 , 33–36.
https://doi.org/10.1016/0040-6090(95)06893-7

 19.  Dedova , T. , Krunks , M. , Grossberg , M. , Volobujeva , O. , and Oja Acik , I. A novel deposition method to grow ZnO nanorods: spray pyrolysis. Superlatt. Microstruct. , 2007 , 42 , 444–450.
https://doi.org/10.1016/j.spmi.2007.04.010

 20.  Gromyko , I. , Krunks , M. , Dedova , T. , Katerski , A. , Klauson , D. , and Oja Acik , I. Surface properties of sprayed and electrodeposited ZnO rod layers. Appl. Surf. Sci. , 2017 , 405 , 521–528.
https://doi.org/10.1016/j.apsusc.2017.02.065

 21.  Kriisa , M. , Kärber , E. , Krunks , M. , Mikli , V. , Unt , T. , Kukk , M. , and Mere , A. Growth and properties of ZnO films on polymeric substrate by spray pyrolysis method. Thin Solid Films , 2014 , 555 , 87–92.
https://doi.org/10.1016/j.tsf.2013.05.150

 22.  Navale , S. C. , Ravi , V. , Mulla , I. S. , Gosavi , S. W. , and Kulkarni , S. K. Low temperature synthesis and NOx sensing properties of nanostructured Al-doped ZnO. Sens. Actuators B , 2007 , 126 , 382–386.
https://doi.org/10.1016/j.snb.2007.03.019

 23.  Vergara , A. , Vembu , S. , Ayhan , T. , Ryan , M. A. , Homer , M. L. , and Huerta , R. Chemical gas sensor drift compensation using classifier ensembles. Sens. Actuators B , 2012 , 166 , 320–329.
https://doi.org/10.1016/j.snb.2012.01.074

 24.  Krško , O. , Plecenik , T. , Moško , M. , Haidry , A. A. , Ďurina , P. , Truchlý , M. , et al. Highly sensitive hydrogen semi­conductor gas sensor operating at room temperature. Procedia Eng. , 2015 , 120 , 618–622.
https://doi.org/10.1016/j.proeng.2015.08.748

 25.  Castañeda , L. , Silva-González , R. , Gracia-Jiménez , J. M. , Hernández-Torres , M. E. , Avendaño-Alejo , M. , Márquez-Beltrán , C. , et al. Influence of aluminum concentration and substrate temperature on the physical charac­teristics of chemically sprayed ZnO: Al thin solid films deposited from zinc pentanedionate and aluminum pentanedionate. Mater. Sci. Semicond. Process. , 2010 , 13 , 80–85.
https://doi.org/10.1016/j.mssp.2010.03.003

 26.  Galstyan , V. , Aroutiounian , V. , Arakelyan , V. , and Shahnazaryan , G. Investigation of hydrogen sensor made of ZnO thin film. Arm. J. Phys. , 2008 , 1 , 242–246.

 27.  Badadhe , S. S. and Mulla , I. S. Effect of aluminium doping on structural and gas sensing properties of zinc oxide thin films deposited by spray pyrolysis. Sens. Actuators B , 2011 , 156 , 943–948.
https://doi.org/10.1016/j.snb.2011.03.010

 
Back

Current Issue: Vol. 68, Issue 4, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December