ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
CHARACTERISTICS AND COMPREHENSIVE UTILIZATION OF OIL SHALE OF THE UPPER CRETACEOUS QINGSHANKOU FORMATION IN THE SOUTHERN SONGLIAO BASIN, NE CHINA; pp. 312–335
PDF | https//doi.org/10.3176/oil.2017.4.02

Authors
FEI HU, ZHAOJUN LIU, QINGTAO MENG, QINGLEI SONG, WENQUAN XIE
Abstract

The Songliao Basin is a large Mesozoic oil shale-bearing basin in northeastern China, the resources of which are most abundant, while the rock’s discovered resources are mainly concentrated in the southern part of the basin. The oil shale of the Cretaceous Qingshankou Formation (K2qn1) in the southern Songliao Basin was evaluated based on proximate and geochemical analyses. The K2qn1 oil shale is characterized by a shallow burial depth, medium-to-high oil yield, medium calorific value, high ash yield and low sulfur content. The maximum oil yield is 16.37% (avg. 5.54%), the calorific value is up to 10,174 J/g (avg. 3,264 J/g), and the average ash and sulfur contents are 82.03 and 1.49%, respectively. In addition to rich organic matter, the K2qn1 oil shale contains clay minerals, quartz and feldspars with the respective average contents of 55.0, 23.3 and 12.4%. The contents of chemical compounds SiO2 and Al2O3 are high, being on average 51.58 and 15.02%, respectively. The oil shale is enriched in trace elements Mo, U and Pb, whereas rare earth elements (REEs) are represented by La, Ce, Pr, Nd, Sm, Gd and Tb. In view of the above diverse characteristics of oil shale and in consideration of environmental factors, an economical and efficient scheme of comprehensive utilization of K2qn1 oil shale has been proposed. Oil shale can be directly used to refine shale oil by pyrolysis or combusted for power generation, while the remaining ash can be used for producing synthetic marble, building materials, alumina and silica and extracting metal elements.

References

1.      Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2003, 20(3), 193–252.

2.     Qian, J. L., Wang, J. Q., Li, S. Y. World oil shale. Energy of China, 2006, 28(8), 16–19 (in Chinese with English abstract).

3.     Liu, Z. J., Dong, Q. S., Ye, S. Q., Zhu, J. W., Guo, W., Li, D. C., Liu, R., Zhang, H. L., Du, J. F. The situation of oil shale resources in China. Journal of Jilin University (Earth Science Edition), 2006, 36(6), 869–876 (in Chinese with English abstract).

4.     Na, J. G., Im, C. H., Chung, S. H., Lee, K. B. Effect of oil shale retorting temperature on shale oil yield and properties. Fuel, 2012, 95, 131–135.
https://doi.org/10.1016/j.fuel.2011.11.029

5.     Boak, J. Where do we stand? A global view of the status and future of shale oil production from oil shale. Proc. 33rd Oil Shale Symposium, October 14–18, 2013, Colorado School of Mines, Golden, Colorado, USA, 14 (ISBN: 978-1-5108-0233-9).

6.     2010 Survey of Energy Resources. World Energy Council, 2010.

7.     2013 Survey of Energy Resources. World Energy Council, 2013.

8.     Han, X., Kulaots, I., Jiang, X., Suuberg, E. M. Review of oil shale semicoke and its combustion utilization. Fuel, 2014, 126, 143–161.
https://doi.org/10.1016/j.fuel.2014.02.045

9.     Bai, J. R., Bai, Z., Wang, Q., Li, S. Y. Process simulation of oil shale compre­hensive utilization system based on Huadian-type retorting technique. Oil Shale, 2015, 32(1), 66–81.
https://doi.org/10.3176/oil.2015.1.05

10. Qian, J., Wang, J., Li, S. Oil shale development in China. Oil Shale, 2003, 20(3S), 356–359.

11. Soone, J., Doilov, S. Sustainable utilization of oil shale resources and com­parison of contemporary technologies used for oil shale processing. Oil Shale, 2003, 20(3S), 311–323.

12. Zhang, Q. M., Guan, J., He, D. M. Typical technologies for oil shale retorting. Journal of Jilin University (Earth Science Edition), 2006, 36(6), 1019–1026 (in Chinese with English abstract).

13. Sun, J., Wang, Q., Sun, D. H., Li, S. H., Sun, B. Z., Bai, J. R. Integrated technol­ogy for oil shale comprehensive utilization and cycling economy. Modern Electric Power, 2007, 24(5), 57–67 (in Chinese with English abstract).

14. Jiang, X. M., Han, X. X., Cui, Z. G. New technology for the comprehensive utilization of Chinese oil shale resources. Energy, 2007, 32(5), 772–777.
https://doi.org/10.1016/j.energy.2006.05.001

15. Wang, S., Jiang, X. M., Han, X. X., Tong, J. H. Investigation of Chinese oil shale resources comprehensive utilization performance. Energy, 2012, 42(1), 224–232.
https://doi.org/10.1016/j.energy.2012.03.066

16. Zhang, L., Han, X. X., Wang, Z. C., Jiang, X. M. Progress of comprehensive utilization technology of oil shale. China Mining Magazine, 2012, 21(9), 50–53 (in Chinese with English abstract).

17. Liu, C. S. Comprehensive exploitation and utilization of oil shale. Coal Pro­cessing & Comprehensive Utilization, 2010, 3, 37–42 (in Chinese with English abstract).

18. Mõtlep, R., Kirsimäe, K., Talviste, P., Puura, E., Jürgenson, J. Mineral com­posi­tion of Estonian oil shale semi-coke sediments. Oil Shale, 2007, 24(3), 405–422.

19. Bityukova, L., Mõtlep, R., Kirsimäe, K. Composition of oil shale ashes from pulverized firing and circulating fluidized-bed boiler in Narva Thermal Power Plants, Estonia. Oil Shale, 2010, 27(4), 339–353.
https://doi.org/10.3176/oil.2010.4.07

20. Vallner, L., Gavrilova, O., Vilu, R. Environmental risks and problems of the optimal management of an oil shale semi-coke and ash landfill in Kohtla-Järve, Estonia. Sci. Total Environ., 2015, 524–525, 400–415.
https://doi.org/10.1016/j.scitotenv.2015.03.130

21. Liu, Z. J., Yang, H. L., Dong, Q. S., Zhu, J. W., Guo, W., Ye, S. Q., Liu, R., Meng, Q. T., Zhang, H. L., Gan, S. C. Oil Shale in China. Petroleum Industry Press, Beijing, 2009, 38–116 (in Chinese with English abstract).

22. Bao, W. W., Liu, L., Zou, H. F., Gan, S. C., Xu, X. C., Ji, G. J., Gao, G. M., Zheng, K. Y. Removal of Cu2+ from aqueous solutions using Na-A zeolite from oil shale ash. Chinese J. Chem. Eng., 2013, 21(9), 974–982.
https://doi.org/10.1016/S1004-9541(13)60529-7

23. Yu, X. Y. Research on Pyrolysis Characteristics and Residue Utilization of Jimusar Oil Shale. Xinjiang University Master Thesis, 2015 (in Chinese with English abstract).

24. Ji, G. J., Hao, L., Li, X. J., Gao, G. M., Gan, S. C. Method for extracting nano γ-Al2O3 by oil shale ash. China Non-Metallic Mining Industry Herald, 2011, 3, 29–31 (in Chinese with English abstract).

25. Cao, C. L., Pan, Y., Wang, X., Zhou, G. X., Gong, K., Wang, Y. B., Yang, S. C. Research progress of comprehensive utilization technologies for oil shale ash. Energy Chemical Industry, 2015, 36(2), 39–42 (in Chinese with English abstract).

26. Gao, G. M. Study on the Preparation of Silica Nanoparticles and Hydrophobic Aerogels from Oil Shale Ash. Jilin University Doctoral Thesis, 2010 (in Chinese with English abstract).

27. Shi, L., Ji, G. J., Miao, L., Gao, G. M., Gan, S. C., Li, X. J. Preparation of silica nanoparticles using sodium silicate extracted from oil shale ash as precursor. Chinese Journal of Applied Chemistry, 2011, 28(10), 1195–1201 (in Chinese with English abstract).

28. Wang, W. Y., Su, K., Gao, G. M., Gan, S. C., Liu, Z. J. The chemical character­istics and distribution of platinum group elements in the oil shale samples, Jilin Province. Journal of Jilin University (Earth Science Edition), 2006, 36(6), 969–973 (in Chinese with English abstract).

29. Gao, G. M., Su, K., Wang, W. Y., Gan, S. C., Liu, Z. J. Study on rare earth and trace elements in oil shale samples, Huadian, Jilin Province. Journal of Jilin University (Earth Science Edition), 2006, 36(6), 974–979 (in Chinese with English abstract).

30. Ji, G. J., Yang, C. M., Gan, S. C., Wu, X. M., Wang, Z. G. Production of Port­land cement with oil shale ash. Journal of Jilin University (Earth Science Edition), 2012, 42(4), 1173–1178 (in Chinese with English abstract).

31. Zhou, J. M., Niu, X. C. Sources and utilization of oil shale residue. Journal of Guangdong University of Petrochemical Technology, 2013, 23(1), 11–14 (in Chinese with English abstract).

32. Wang, Q., Bai, J. R., Sun, B. Z., Sun, J. Strategy of Huadian oil shale compre­hensive utilization. Oil Shale, 2005, 22(3), 305–315.

33. Gao, R. Q., Cai, X. Y. Field Formation Conditions and Distribution Rules in Songliao Basin. Petroleum Industry Press, Beijing, 1997, 65–163 (in Chinese with English abstract).

34. Mi, J. K., Zhang, S. C., Hu, G. Y., He, K. Geochemistry of coal-measure source rocks and natural gases in deep formations in Songliao Basin, NE China. Int. J. Coal Geol., 2010, 84(3–4), 276–285.
https://doi.org/10.1016/j.coal.2010.09.009

35. Bechtel, A., Jia, J. L., Strobl, S. A. I., Sachsenhofer, R. F., Liu, Z. J., Gratzer, R., Püttmann, W. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): Implications from geochemical analysis. Org. Geochem., 2012, 46, 76–95.
https://doi.org/10.1016/j.orggeochem.2012.02.003

36. Jia, J. L., Liu, Z. J., Bechtel, A., Strobl, S. A. I., Sun, P. C. Tectonic and climate control of oil shale deposition in the Upper Cretaceous Qingshankou Formation (Songliao Basin, NE China). Int. J. Earth Sci., 2013, 102(6), 1717–1734.
https://doi.org/10.1007/s00531-013-0903-7

37. Feng, Z. Q., Jia, C. Z., Xie, X. N., Zhang, S., Feng, Z. H., Cross, T. A. Tectono­stratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, northeast China. Basin Res., 2010, 22(1), 79–95.
https://doi.org/10.1111/j.1365-2117.2009.00445.x

38. Cao, H., Guo, W., Shan, X., Ma, L., Sun, P. Paleolimnological environments and organic accumulation of the Nenjiang Formation in the southeastern Songliao Basin, China. Oil Shale, 2015, 32(1), 5–24.
https://doi.org/10.3176/oil.2015.1.02

39. Li, S. Q., Chen, F. K., Siebel, W., Wu, J. D., Zhu, X. Y., Shan, X. L., Sun, X. M. Late Mesozoic tectonic evolution of the Songliao basin, NE China: Evidence from detrital zircon ages and Sr-Nd isotopes. Gondwana Res., 2012, 22(3–4), 943–955.
https://doi.org/10.1016/j.gr.2012.04.002

40. Jia, J. L., Liu, Z. J., Meng, Q. T., Liu, R., Sun, P. C., Chen, Y. C. Quantitative evaluation of oil shale based on well log and 3-D seismic technique in the Songliao Basin, Northeast China. Oil Shale, 2012, 29(2), 128–150.
https://doi.org/10.3176/oil.2012.2.04

41. The National Standards of the People’s Republic of China GB/T14506.28-93. Methods for chemical analysis of silicate rocks, 1994.

42. Recommended standards for geological industry of the People’s Republic of China DZ/T 0223-2001. Methods of inductively coupled plasma mass spectrometry(ICP-MS) analysis, 2002.

43. Liu, J. H., Wu, Z. X., Yu, S., Jia, D. H. Paleocene trace element geochemistry and its geological significance in Lishui sag. China Offshore Oil and Gas, 2005, 17(1), 8–11 (in Chinese with English abstract).

44. The National Standards of the People’s Republic of China GB/T212-2008. Proximate analysis of coal, 2008.

45. Zhao, L. Y., Chen, J. N., Wang, T. S. Grade dividing and composition of oil shale in China. Geoscience. 1991, 5(4), 423–429 (in Chinese with English abstract).

46. You, J. J., Ye, S. Q., Liu, Z. J. Comprehensive development and utilization of oil shale. Global Geology, 2004, 23(3), 261–265 (in Chinese with English abstract).

47. Liu, Z. J., Bao, C. L., Lan, X. Y., Zhang, J. H., Wang, Y., Yu, D. L. Porous and thermal insulation building materials from oil shale. Patent CN101143766, 2008, China.

48. An, B. C., Wang, W. Y., Ji, G. J., Gan, S. C., Gao, G. M., Xu, J. J., Li, G. G. Preparation of nano-sized α-Al2O3 from oil shale ash. Energy, 2010, 35(1), 45–49.
https://doi.org/10.1016/j.energy.2009.08.027

49. Gan, S. C., Gao, G. M., Liu, Z. J., Wang, W. Y., Xiao, G. S., Li, G. H., An, B. C. Preparation of high purity nano-sized silica from oil shale ash. Patent CN101214963A, 2010, China.

50. Gan, S. C., Xu, J. J., Liu, Z. J., Lai, Y. W., Li, G. H. Preparation of alumina from oil shale ash. Patent CN200810052017, 2008, China.

51. Feng, Z. Y., Li, Y., Xue, X. X., He, Y., Liu, P. X. Preparation of alumina and silica white from oil shale residue. Mining and Metallurgical Engineering, 2008, 28(4), 53–57 (in Chinese with English abstract).

52. Li, G. H., Wang, W. Z., Long, T., Tian, Z. Y., Cao, Z. Y., Yang, J. L., Gan, S. C., Zhang, K., Huang, R. A general and facile method to prepare uniform gamma-alumina hollow microspheres from waste oil shale ash. Mater. Lett., 2014, 133, 143–146.
https://doi.org/10.1016/j.matlet.2014.07.147
https://doi.org/10.1016/j.matlet.2014.07.005

53. Gan, S. C., Yang, C. M., Xu, J. J., Lai, Y. W., Li, G. H., Xiao, G. S. Preparation and property analysis of artificial marble from oil shale ash. Journal of Jilin University (Earth Science Edition), 2011, 41(3), 879–884 (in Chinese with English abstract).

54. Ni, W., Wang, H. X., Wu, Y. L., Liu, F, M. Preparation of low-clinker cement from oil shale residue. Patent CN101074149A, 2007, China.

55. Guo, L., Yan, C. J., Wang, Y. X. Preparation of ceramsite from oil shale residue. Patent CN1872784A, 2006, China.

56. Zhang, A. Y., Wong, C. M. The leading factor in extraction of vanadium from black shale-type ore. Earth Science – Journal of China University of Geo­sciences, 1989, 14(4), 391–397 (in Chinese).

57. Fan, D., Zhang, T., Ye, J. Chinese Black Rock Series and Relevant Ore Deposits. Science Publishing House, Beijing, China, 2004.

58. Xu, Y. M., He, D. M., Wang, J. F., Ma, K., Zhang, Q. M. Occurrence and acetate leaching rules of metal elements in oil shale ash. Materials Review., 2014, 28(5), 128–131 (in Chinese with English abstract).

59.          Liu, R., Liu, Z. J., Guo, W., Chen, H. J. Characteristics and comprehensive utilization potential of oil shale of the Yin’e Basin, Inner Mongolia, China. Oil Shale, 2015, 32(4), 293–312.
https://doi.org/10.3176/oil.2015.4.02

Back to Issue