headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
» 2017
Vol. 34, Issue 4
Vol. 34, Issue 3
Vol. 34, Issue 2
Vol. 34, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

LIQUEFACTION OF NİĞDE-ULUKIŞLA OIL SHALE: THE EFFECTS OF PROCESS PARAMETERS ON THE CONVERSION OF LIQUEFACTION PRODUCTS; pp. 336–353

(Full article in PDF format) https//doi.org/10.3176/oil.2017.4.03


Authors

OZLEM ESEN KARTAL, SERHAT AKIN, BERNA HASÇAKIR, HÜSEYİN KARACA

Abstract

In this paper, the direct liquefaction of Turkish Niğde-Ulukışla oil shale in noncatalytic and catalytic conditions was studied. The effects of pressure, tetralin/oil shale ratio, catalyst type and concentration, reaction time and temperature and oil shale/waste paper ratio on the process were investigated. It was found that tetralin/oil shale ratio had no considerable effect on the total and liquefaction products conversions under the non­catalytic conditions. Fe2O3, MoO3, Mo(CO)6, Cr(CO)6 and zeolite were used as catalysts in catalytic liquefaction. The highest total and liquefaction products conversions were obtained using MoO3 as catalyst at a concentration of 9% by weight. Reaction temperature of 400 °C and reaction time of 90 minutes were chosen according to obtained liquefaction results. Co-liquefaction experiments were performed using waste paper. Both the total and oil + gas conversions were increased to a considerable extent by the application of the co-liquefaction process. According to gas chromato­graphic-mass spectrometric (GC-MS) analysis, the liquid product from the liquefaction process of oil shale under catalytic conditions of experiment 22 consisted mainly of naphthalene and its derivatives and polycyclic hydro­carbon such as indene and its derivatives.

Keywords

oil shale liquefaction, total conversion, liquefaction products, Niğde-Ulukişla.

References

1.       Shah , Y. T. Reaction Engineering in Direct Coal Liquefaction. Addison-Wesley Advanced Book Program , Reading , Massachusetts , 1981.

2.       Liu , Z. , Shi , S. , Li , Y. Coal liquefaction technologies – Development in China and challenges in chemical reaction engineering. Chem. Eng. Sci. , 2010 , 65(1) , 12–17.
https://doi.org/10.1016/j.ces.2009.05.014

3.       Stihle , J. , Uzio , D. , Lorentz , C. , Charon , N. , Ponthus , J. , Geantet , C. Detailed cha­racterization of coal-derived liquids from direct coal liquefaction on supported catalysts. Fuel , 2012 , 95 , 79–87.
https://doi.org/10.1016/j.fuel.2011.11.072

4.       Jiang , H. , Deng , S. , Chen , J. , Zhang , M. , Li , S. , Shao , Y. , Yang , J. , Li , J. Effect of hydrothermal pretreatment on product distribution and characteristics of oil produced by the pyrolysis of Huadian oil shale. Energ. Convers. Manage. , 2017 , 143 , 505–512.
https://doi.org/10.1016/j.enconman.2017.04.037

5.       Wu , T. , Xue , Q. , Li , X. , Tao , Y. , Jin , Y. , Ling , C. , Lu , S. Extraction of kerogen from oil shale with supercritical carbon dioxide: Molecular dynamics simulations. J. Supercrit. Fluid. , 2016 , 107 , 499–506.
https://doi.org/10.1016/j.supflu.2015.07.005

6.       Lin , L. , Lai , D. , Guo , E. , Zhang , C. , Xu , G. Oil shale pyrolysis in indirectly heated fixed bed with metallic plates of heating enhancement. Fuel , 2016 , 163 , 48–55.
https://doi.org/10.1016/j.fuel.2015.09.024

7.       Shi , W. , Wang , Z. , Song , W. , Li , S. , Li , X. Pyrolysis of Huadian oil shale under catalysis of shale ash. J. Anal. Appl. Pyrol. , 2017 , 123 , 160–164.
https://doi.org/10.1016/j.jaap.2016.12.011

8.       Zhao , X. , Liu , Z. , Liu , Q. The bond cleavage and radical coupling during pyro­lysis of Huadian oil shale. Fuel , 2017 , 199 , 169–175.
https://doi.org/10.1016/j.fuel.2017.02.095

9.       Bai , F. , Sun , Y. , Liu , Y. , Guo , M. Evaluation of the porous structure of Huadian oil shale during pyrolysis using multiple approaches. Fuel , 2017 , 187 , 1–8.
https://doi.org/10.1016/j.fuel.2016.09.012

10.    Pan , L. , Dai , F. , Li , G. , Liu , S. A TGA/DTA-MS investigation to the influence of process conditions on the pyrolysis of Jimsar oil shale. Energy , 2015 , 86 , 749–757.
https://doi.org/10.1016/j.energy.2015.04.081

11.    Abourriche , A. K. , Oumam , M. , Hannache , H. , Birot , M. , Abouliatim , Y. , Benhammou , A. , El Hafiane , Y. , Abourriche , A. M. , Pailler , R. , Naslain , R. Comparative studies on the yield and quality of oils extracted from Moroccan oil shale. J. Supercrit. Fluid. , 2013 , 84 , 98–104.
https://doi.org/10.1016/j.supflu.2013.09.018

12.    Al-Harahsheh , M. , Al-Ayed , O. , Robinson , J. , Kingman , S. , Al-Harahsheh , A. , Tarawneh , K. , Saeid , A. , Barranco , R. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales. Fuel Process. Technol. , 2011 , 92(9) , 1805–1811.
https://doi.org/10.1016/j.fuproc.2011.04.037

13.    Tiikma , L. , Johannes , I. , Luik , H. , Zaidentsal , A. , Vink , N. Thermal dissolution of Estonian oil shale. J. Anal. Appl. Pyrol. , 2009 , 85(1–2) , 502–507.
https://doi.org/10.1016/j.jaap.2008.09.009

14.    Yanik , J. , Yüksel , M. , Sağlam , M. , Olukçu , N. , Bartle , K. , Frere , B. Characterization of the oil fractions of shale oil obtained by pyrolysis and supercritical water extraction. Fuel , 1995 , 74(1) , 46–50.
https://doi.org/10.1016/0016-2361(94)P4329-Z

15.    Lin , Y. , Liao , Y. , Yu , Z. , Fang , S. , Lin , Y. , Fan , Y. , Peng , X. , Ma , X. Co-pyro­lysis kinetics of sewage sludge and oil shale thermal decomposition using TGA–FTIR analysis. Energ. Convers. Manage. , 2016 , 118 , 345–352.
https://doi.org/10.1016/j.enconman.2016.04.004

16.    Hu , Z. , Ma , X. , Li , L. The synergistic effect of co-pyrolysis of oil shale and microalgae to produce syngas. J. Energy Inst. , 2016 , 89(3) , 447–455.
https://doi.org/10.1016/j.joei.2015.02.009

17.    Tiikma , L. , Johannes , I. , Luik , H. , Gregor , A. Synergy in the hydrothermal pyro­lysis of oil shale/sawdust blends. J. Anal. Appl. Pyrol. , 2016 , 117 , 247–256.
https://doi.org/10.1016/j.jaap.2015.11.008

18.    Kılıç , M. , Pütün , A. E. , Uzun , B. B. , Pütün , E. , Converting of oil shale and bio­mass into liquid hydrocarbons via pyrolysis. Energ. Convers. Manage. , 2014 , 78 , 461–467.
https://doi.org/10.1016/j.enconman.2013.11.002

19.    Johannes , I. , Tiikma , L. , Luik , H. Synergy in co-pyrolysis of oil shale and pine sawdust in autoclaves. J. Anal. Appl. Pyrol. , 2013 , 104 , 341–352.
https://doi.org/10.1016/j.jaap.2013.06.015

20.    Aboulkas , A. , Makayssi , T. , Bilali , L. , El harfi , K. , Nadifiyine , M. , Benchanaa , M. Co-pyrolysis of oil shale and High density polyethylene: Structural characterization of the oil. Fuel Process. Technol. , 2012 , 96 , 203–208.
https://doi.org/10.1016/j.fuproc.2011.12.003

21.    Luik , H. , Luik , L. , Tiikma , L. , Vink , N. Parallels between slow pyrolysis of Estonian oil shale and forest biomass residues. J. Anal. Appl. Pyrol. , 2007 , 79(1–2) , 205–209.
https://doi.org/10.1016/j.jaap.2006.12.003

22.    Allawzi , M. , Al-Otoom , A. , Allaboun , H. , Ajlouni , A. , Al Nseirat , F. CO2 super­critical fluid extraction of Jordanian oil shale utilizing different co-solvents. Fuel Process. Technol. , 2011 , 92(10) , 2016–2023.
https://doi.org/10.1016/j.fuproc.2011.06.001

23.    Abourriche , A. , Oumam , M. , Hannache , H. , Adil , A. , Pailler , R. , Naslain , R. , Birot , M. , Pillot , J.-P. Effect of toluene proportion on the yield and composition of oils obtained by supercritical extraction of Moroccan oil shale. J. Supercrit. Fluid. , 2009 , 51(1) , 24–28.
https://doi.org/10.1016/j.supflu.2009.07.003

24.    El harfi , K. , Bennouna , C. , Mokhlisse , A. , Ben chanâa , M. , Lemée , L. , Joffre , J. , Amblès , A. Supercritical fluid extraction of Moroccan (Timahdit) oil shale with water. J. Anal. Appl. Pyrol. , 1999 , 50(2) , 163–174.
https://doi.org/10.1016/S0165-2370(99)00028-5

25.    Yang , Q. , Qian , Y. , Kraslawski , A. , Zhou , H. , Yang , S. Advanced exergy analysis of an oil shale retorting process. Appl. Energ. , 2016 , 165 , 405–415.
https://doi.org/10.1016/j.apenergy.2015.12.104

26.    Chen , B. , Han , X. , Li , Q. , Jiang , X. Study of the thermal conversions of organic carbon of Huadian oil shale during pyrolysis. Energ. Convers. Manage. , 2016 , 127 , 284–292.
https://doi.org/10.1016/j.enconman.2016.09.019

27.    Hascakir , B. , Babadagli , T , Akin , S. Experimental and numerical simulation of oil recovery from oil shales by electrical heating. Energ. Fuel. , 2008 , 22 , 3976–3985.
https://doi.org/10.1021/ef800389v

28.    Sınag , A. , Canel , M. Comparison of retorting and supercritical extraction techniques on gaining liquid products from Göynük oil shale (Turkey). Energ. Source. , 2004 , 26(8) , 739–749.
https://doi.org/10.1080/00908310490445599

29.    Tucker , J. D. , Masri , B. , Lee , S. A comparison of retorting and supercritical extraction techniques on El-Lajjun oil shale. Energ. Source. , 2000 , 22(5) , 453–463.
https://doi.org/10.1080/00908310050013866

30.    Hepbaslı , A. Oil shale as an alternative energy source. Energ. Source. , 2004 , 26(2) , 107–118.
https://doi.org/10.1080/00908310490258489

31.    Altun , N. E. , Hiçyılmaz , C. , Hwang , J.-Y. , Bağcı , A. S. , Kök , M. V. Oil shales in the world and Turkey; reserves , current situation and future prospects: a review. Oil Shale , 2006 , 23(3) , 211–227.

32.    Ekinci , E. Turkish oil shales potential for synthetic crude oil and carbon material production. International Conference on Oil Shale: “Recent Trends in Oil Shale” , 7–9 November 2006 , Amman , Jordan , Paper No. rtos-A123.

33.    Şengüler , İ. , Kara-Gülbay , R. , Korkmaz , S. Organic geochemical characteristics of Miocene oil shale deposits in the Eskişehir Basin , western Anatolia , Turkey. Oil Shale , 2014 , 31(4) , 315–336.
https://doi.org/10.3176/oil.2014.4.02

34.    Metecan , İ. H. , Sağlam , M. , Yanık , J. , Ballice , L. , Yüksel , M. Effect of pyrite catalyst on the hydroliquefaction of Göynük (Turkey) oil shale in the presence of toluene. Fuel , 1999 , 78(5) , 619–622.
https://doi.org/10.1016/S0016-2361(98)00182-3

35.    Olukcu , N. , Yanik , J. , Saglam , M. , Yuksel , M. Liquefaction of Beypazari oil shale by pyrolysis. J. Anal. Appl. Pyrol. , 2002 , 64(1) , 29–41.
https://doi.org/10.1016/S0165-2370(01)00168-1

36.    Ballice , L. Effect of demineralization on yield and composition of the volatile products evolved from temperature-programmed pyrolysis of Beypazari (Turkey) oil shale. Fuel Process. Technol. , 2005 , 86(6) , 673–690.
https://doi.org/10.1016/j.fuproc.2004.07.003

37.    Karaca , H. , Ceylan , K. , Olcay , A. Catalytic dissolution of two Turkish lignites in tetralin under nitrogen atmosphere: effects of the extraction parameters on the conversion. Fuel , 2001 , 80(4) , 559–564.
https://doi.org/10.1016/S0016-2361(00)00119-8

38.    Rodriguez , I. M. , Chomon , M. J. , Caballero , B. , Arias , P. L , Legarreta , J. A. Liquefaction behaviour of a Spanish subbituminous A coal under different conditions of hydrogen availability. Fuel Process. Technol. , 1998 , 58(1) , 17–24.
https://doi.org/10.1016/S0378-3820(98)00084-8

39.    Wang , Z. , Shui , H. , Zhang , D. , Gao , J. A comparison of FeS , FeS+S and solid superacid catalytic properties for coal hydro-liquefaction. Fuel , 2007 , 86(5–6) , 835–842.
https://doi.org/10.1016/j.fuel.2006.09.018

40.    Shui , H. , Chen , Z. , Wang , Z. , Zhang , D. Kinetics of Shenhua coal liquefaction catalyzed by SO42-/ZrO2 solid acid. Fuel , 2010 , 89(1) , 67–72.
https://doi.org/10.1016/j.fuel.2009.02.019

41.    Ishak , M. A. M. , Ismail , K. , Abdullah , M. F. , Kadir , M. O. A. , Mohamed , A. R. , Abdullah , W. H. Liquefaction studies of low-rank Malaysian coal using high-pressure high-temperature batch-wise reactor. Coal Prep. , 2005 , 25(4) , 221–237.
https://doi.org/10.1080/07349340500444471

42.    Rafiqul , I. , Lugang , B. , Yan , Y. , Li , T. Study on co-liquefaction of coal and bagasse by factorial experiment design method. Fuel Process. Technol. , 2000 , 68(1) , 3–12.
https://doi.org/10.1016/S0378-3820(00)00107-7

Abnisa , F. , Daud , W. M. A. W. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energ. Convers. Manage. , 2014 , 87 , 71–85.
https://doi.org/10.1016/j.enconman.2014.07.007

 
Back

Current Issue: Vol. 36, Issue 2S, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December