headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2018
» 2017
Vol. 66, Issue 4
Vol. 66, Issue 3
Vol. 66, Issue 2
Vol. 66, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Heat losses in ferroelectric ceramics due to switching processes; pp. 462–466

(Full article in PDF format) https://doi.org/10.3176/proc.2017.4.07


Authors

Olga Malyshkina, Anton Eliseev, Rostislav Grechishkin

Abstract

In the present work, the heat losses of ferroelectric ceramics due to the switching processes were studied in high-amplitude AC electric fields in a wide frequency range of 50 to 1500 Hz. We showed the existence of a correlation between the time dependences of switchable polarization and self-heating temperature. Based on the approximation of the experimental data, an analytical expression was obtained for describing the decrease in the switched polarization with increasing electric field frequency corresponding to the exponential law. The method of estimating volumetric heat capacity coefficient by using the heat dissipation during the switching process was proposed.

Keywords

ferroelectric ceramics, switching processes, heat losses.

References

   1.   Jha , A. R. MEMS and Nanotechnology-Based Sensors and Devices for Communications , Medical and Aerospace Applications. CRC Press. , Baco Raton , 2008.

   2.   Jalili , N. and Afshari , M. Piezoelectric-Based Vibration Control: From Macro to Micro , in: Nano Scale Systems. Springer , New York , 2010.
https://doi.org/10.1007/978-1-4419-0070-8

   3.   Visvanathan , K. and Gianchandani , Y. B. Microheaters based on ultrasonic actuation of piezoceramic elements. J. Micromech. Microeng. , 2011 , 21 , 085030 (10pp).

   4.   Uchino , K. and Giniewicz , J. R. Micromechatronics. Marcel Dekker , New York , 2003.

   5.   Tong , Yi-Z. , Minghao , Z. , and Pin , T. Fracture of piezo­electric ceramics. Adv. Appl. Mech. , 2002 , 38 , 147–289.
https://doi.org/10.1016/S0065-2156(02)80104-1

   6.   Liu , G. , Zhang , S. , Jiang , W. , and Cao , W. Losses in ferro­electric materials. Mater. Sci. Eng. R Rep. , 2015 , 89 , 1–48.
https://doi.org/10.1016/j.mser.2015.01.002

   7.   Ueha , S. , Tomikawa , Y. , Kurosawa , M. , and Nakamura , N. Ultrasonic Motors: Theory and Applications. Clarendon Press , Oxford , U.K. , 1993.

   8.   Shigematsu , T. , Kurosawa , M. K. , and Asai , K. Nanometer stepping drives of surface acoustic wave motor. IEEE Trans. Ultrason. Ferroelect. Freq. Control , 2003 , 50 , 376–385.
https://doi.org/10.1109/TUFFC.2003.1197960

   9.   Senousy , M. S. , Li , F. X. , Mumford , D. , Gadala , M. , and Rajapakse , R. K. N. D. Thermo-electro-mechanical performance of piezoelectric stack actuators for fuel injector applications. J. Intell. Mater. Syst. Struct. , 2009 , 20 , 387–399.
https://doi.org/10.1177/1045389X08095030

10.   Harlow , J. H. Electric Power Transformer Engineering. CRC Press , Baco Raton , 2004.

11.   Crowell , B. Vibrations and Waves , in: Light and Matter online text series. Fullerton , California , 2006.

12.   Tooley , M. Electronic Circuits: Fundamentals and Applications. Elsevier , 2006.

13.   Ikeda , T. Fundamentals of Piezoelectricity. Oxford University Press , 1996.

14.   Zhang , Q. M. , Wang , H. , and Zhao , J. Effect of driving field and temperature on the response behavior of ferro­electric actuator and sensor materials. J. Intell. Mater. Syst. Struct. , 1995 , 6 , 84–93.
https://doi.org/10.1177/1045389X9500600111

15.   Sakai , T. and Kawamoto , H. Durability properties of piezoelectric stack actuator. Japan. J. Appl. Phys. , 1998 , 37 , 5338–5341.
https://doi.org/10.1143/JJAP.37.5338

16.   Zheng , J. , Takahashi , S. , Yoshikawa , Sh. , and Uchino , K. Heat generation in multilayer piezoelectric actuator.
J. Amer. Ceram. Soc. , 1996 , 79 , 3193–3198.
https://doi.org/10.1111/j.1151-2916.1996.tb08095.x

17.   Malyshkina , O. V. and Eliseev , A. Yu. Power dissipation during dielectric loop evolution in PZT ceramics. Ferroelectrics , 2015 , 480:1 , 10–15.
https://doi.org/10.1080/00150193.2015.1012395

18.   Shebanovs , L. , Borman , K. , Lawless , W. N. , and Kalvane , A. Electrocaloric effect in some perovskite ferroelectric ceramics and multilayer capacitors. Ferroelectrics , 2002 , 273:1 , 137–142.
https://doi.org/10.1080/00150190211761

19. Kallaev , S. N. , Omarov , Z. M. , Bilalov , A. R. , Rabadanov , M. Kh. , Sadykov , S. A. , and Bormanis , K. Specific features of the thermal physical properties of relaxor ceramics based on lead zirconate titanate. Phys. Solid State , 2009 , 51 , 1524–1526.
https://doi.org/10.1134/S106378340907052X

 

 
Back

Current Issue: Vol. 67, Issue 4 in Press, 2018




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December