headerpos: 9353
 
 
  Estonian Journal of Earth Sciences

ISSN 1736-7557 (electronic)  ISSN 1736-4728 (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences, Geology
Published since 1952

Estonian Journal of Earth Sciences

ISSN 1736-7557 (electronic)  ISSN 1736-4728 (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences, Geology
Published since 1952

Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Article Publication Charges
» Archival Policy
» Copyright and Licensing Policy
Guidelines for Authors
» Instructions to Authors
Guidelines for Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
Vol. 66, Issue 4
Vol. 66, Issue 3
Vol. 66, Issue 2
Vol. 66, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» 2007
» Back issues (full texts)
  in Google
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA
Keemia. Geoloogia
» ETERA_scan
Subscription Information
Internet Links
Support & Contact
Publisher
» Other Journals
» Staff

The impact of seasonal changes in stratification on the dynamics of internal waves in the Sea of Okhotsk; pp. 238–255

(Full article in PDF format) https://doi.org/10.3176/earth.2017.20


Authors

Oxana E. Kurkina, Tatyana G. Talipova, Tarmo Soomere, Andrey A. Kurkin, Artem V. Rybin

Abstract

The properties and dynamics of internal waves in the ocean crucially depend on the vertical structure of water masses. We present detailed analysis of the impact of spatial and seasonal variations in the density-driven stratification in the Sea of Okhotsk on the properties of the classic kinematic and nonlinear parameters of internal waves in this water body. The resulting maps of the phase speed of long internal waves and coefficients at various terms of the underlying Gardner’s equation make it possible to rapidly determine the main properties of internal solitary waves in the region and to choose an adequate set of parameters of the relevant numerical models. It is shown that the phase speed of long internal waves almost does not depend on the particular season. The coefficient at the quadratic term of the underlying evolution equation is predominantly negative in summer and winter and therefore internal solitons usually have negative polarity. Numerical simulations of the formation of internal solitons and solibores indicate that seasonal variations in the coefficient at the cubic term of Gardner’s equation lead to substantial variations in the shape of solibores.

Keywords

internal waves, stratification, internal solitons, Gardner’s equation, Sea of Okhotsk.

References

Alford , M. H. , Peacock , T. , MacKinnon , J. A. , Nash , J. D. , Buijsman , M. C. , Centuroni , L. R. , Chao , S.-Y. , Chang , M.-H. , Farmer , D. M. , Fringer , O. B. , Fu , K.-H. , Gallacher , P. C. , Graber , H. C. , Helfrich , K. R. , Jachec , S. M. , Jackson , C. R. , Klymak , J. M. , Ko , D. S. , Jan , S. , Johnston , T. M. S. , Legg , S. , Lee , I.-H. , Lien , R.-C. , Mercier , M. J. , Moum , J. N. , Musgrave , R. , Park , J.-H. , Pickering , A. I. , Pinkel , R. , Rainville , L. , Ramp , S. R. , Rudnick , D. L. , Sarkar , S. , Scotti , A. , Simmons , H. L. , St Laurent , L. C. , Venayagamoorthy , S. K. , Wang , Y.-H. , Wang , J. , Yang , Y. J. , Paluszkiewicz , T. & Tang , T.-Y. 2015. The formation and fate of internal waves in the South China Sea. Nature , 521(7550) , 65–69.
https://doi.org/10.1038/nature14399

Bourgault , D. , Morsilli , M. , Richards , C. , Neumeier , U. & Kelley , D. E. 2014. Sediment resuspension and nepheloid layers induced by long internal solitary waves shoaling orthogonally on uniform slopes. Continental Shelf Research , 72 , 21–33.
https://doi.org/10.1016/j.csr.2013.10.019

Carnes , M. R. 2009. Description and Evaluation of GDEM-V3.0. Naval Research Laboratory (NRL) Report NRL/MR/7330-09-9165 , Naval Research Laboratory , 27 pp.

Grimshaw , R. , Pelinovsky , E. , Talipova , T. & Kurkin , A. 2004. Simulation of the transformation of internal solitary waves on oceanic shelves. Journal of Physical Oceanography , 34 , 2774–2791.
https://doi.org/10.1175/JPO2652.1

Grimshaw , R. , Talipova , T. , Pelinovsky , E. & Kurkina , O. 2010. Internal solitary waves: propagation , deformation and disintegration. Nonlinear Processes in Geophysics , 17 , 633–649.
https://doi.org/10.5194/npg-17-633-2010

Fofonoff , N. & Millard , R. Jr. 1983. Algorithms for computation of fundamental properties of seawater. UNESCO Technical Paper in Marine Science , 44 , 15–25.

Holloway , P. , Pelinovsky , E. , Talipova , T. & Barnes , B. 1997. A nonlinear model of internal tide transformation on the Australian North West shelf. Journal of Physical Oceanography , 27 , 871–896.
https://doi.org/10.1175/1520-0485(1997)027<0871:ANMOIT>2.0.CO;2

Ivanov , V. A. , Pelinovsky , E. N. & Talipova , T. G. 1993. Recurrence frequency of internal wave amplitudes in the Mediterranean. Oceanology , 33 , 147–150.

Jackson , C. R. 2004. An Atlas of Internal Solitary-like Waves and Their Properties. Prepared for Office of Naval Research , Code 322 PO. Global Ocean Associates , 560 pp. http://internalwaveatlas.com/Atlas2_PDF/IWAtlas2_Pg357_SeaofOkhotsk.pdf [accessed 10 June 2017].

Kurkina , O. E. & Talipova , T. G. 2011. Huge internal waves in the vicinity of the Spitsbergen Island (Barents Sea). Natural Hazards and Earth System Sciences , 11 , 981–986.
https://doi.org/10.5194/nhess-11-981-2011

Kurkina , O. , Talipova , T. , Pelinovsky , E. & Soomere T. 2011. Mapping the internal wave field in the Baltic Sea in the context of sediment transport in shallow water. Journal of Coastal Research , SI 64 , 2042–2047.

Kurkina , O. E. , Kurkin , A. A. , Rouvinskaya , E. A. & Soomere , T. 2015. Propagation regimes of interfacial solitary waves in a three-layer fluid. Nonlinear Processes in Geophysics , 22 , 117–132.
https://doi.org/10.5194/npg-22-117-2015

Kurkina , O. E. , Kurkin , A. A. , Pelinovsky , E. N. , Semin , S. V. , Talipova , T. G. & Churaev , E. N. 2016. Structure of currents in the soliton of an internal wave. Oceanology , 56 , 767–773.
https://doi.org/10.1134/S0001437016060072

Kurkina , O. , Rouvinskaya , E. , Talipova , T. & Soomere , T. 2017a. Propagation regimes and populations of internal waves in the Mediterranean Sea basin. Estuarine , Coastal and Shelf Science , 185 , 44–54.
https://doi.org/10.1016/j.ecss.2016.12.003

Kurkina , O. , Talipova , T. , Soomere , T. , Giniyatullin , A. & Kurkin , A. 2017b. Kinematic parameters of internal waves of the second mode in the South China Sea. Nonlinear Processes in Geophysics , 24 , 645–660.
https://doi.org/10.5194/npg-24-645-2017

Lamb , K. & Yan , L. 1996. The evolution of long wave undular bores: comparisons of fully nonlinear numerical model with weakly nonlinear theory. Journal of Physical Oceanography , 26 , 2712–2734.
https://doi.org/10.1175/1520-0485(1996)026<2712:TEOIWU>2.0.CO;2

Liao , G. , Hua , X. X. , Liang , C. , Dong , C. , Zhou , B. , Ding , T. , Huang , W. & Xu , D. 2014. Analysis of kinematic parameters of internal solitary waves in the northern South China Sea. Deep-Sea Research , I , 94 , 159–172.
https://doi.org/10.1016/j.dsr.2014.10.002

Liu , A. K. , Su , F.-Ch. , Hsu , M.-K. , Kuo , N.-J. & Ho , Ch.-R. 2013. Generation and evolution of mode-two internal waves in the South China Sea. Continental Shelf Research , 59 , 18–27.
https://doi.org/10.1016/j.csr.2013.02.009

Maderich , V. , Talipova , T. , Grimshaw , R. , Pelinovsky , E. , Choi , B. H. , Brovchenko , I. , Terletska , K. & Kim , D. C. 2009. Internal solitary wave transformation at the bottom step in two-layer flow: the Gardner and Navier–Stokes frameworks. Nonlinear Processes in Geophysics , 16 , 33–42.
https://doi.org/10.5194/npg-16-33-2009

Maderich , V. , Talipova , T. , Grimshaw , R. , Pelinovsky , E. , Choi , B. H. , Brovchenko , I. & Terletska , K. 2010. Interaction of a large amplitude interfacial solitary wave of depression with a bottom step. Physics of Fluids , 22 , Art. No. 076602.
https://doi.org/10.1063/1.3455984

Nagovitsyn , A. P. & Pelinovsky , E. N. 1988. Observations of solitons of internal waves in the coastal zone of the Sea of Okhotsk. Meteorology and Hydrology , 4 , 124–126 [in Russian].

Nagovitsyn , A. P. , Pelinovsky , E. N. & Stepanyants , Yu. A. 1991. Observation and analysis of solitary internal waves in the coastal zone of the Sea of Okhotsk. Soviet Journal of Physical Oceanography , 2 , 65–70.
https://doi.org/10.1007/BF02197419

Osborne , A. R. 2010. Nonlinear Ocean Waves and the Inverse Scattering Transform. Elsevier , San Diego , 944 pp.

Pan , X. , Wong , G. T. F. , Shiah , F.-K. & Ho , T.-Y. 2012. Enhancement of biological productivity by internal waves: observations in the summertime in the northern South China Sea. Journal of Oceanography , 68 , 427–437.
https://doi.org/10.1007/s10872-012-0107-y

Pelinovsky , E. , Polukhina , O. , Slunyaev , A. & Talipova , T. 2007. Internal solitary waves. In Solitary Waves in Fluids (Grimshaw , R. H. J. , ed.) , pp. 85–110. WIT Press. Southampton , Boston.
https://doi.org/10.2495/978-1-84564-157-3/04

Pettersen , T. 2011. Largest accident in Russian oil sector. Barents Observer , December 22 , 2011.

Poloukhin , N. V. , Talipova , T. G. , Pelinovsky , E. N. & Lavrenov , I. V. 2003. Kinematic characteristics of the high-frequency internal wave field in the Arctic Ocean. Oceanology , 43 , 333–343.

Polukhin , N. V. , Pelinovsky , E. N. , Talipova , T. G. & Muyakshin , S. I. 2004. On the effect of shear currents on the vertical structure and kinematic parameters of internal waves. Oceanology , 44 , 22–29.

Ramp , S. R. , Yang , Y. J. & Bahr , F. L. 2010. Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Processes in Geophysics , 17 , 481–498.
https://doi.org/10.5194/npg-17-481-2010

Reeder , D. B. , Ma , B. B. & Yang , Y. J. 2011. Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic , shoaling deep-water internal solitary waves. Marine Geology , 279 , 12–18.
https://doi.org/10.1016/j.margeo.2010.10.009

Rutenko , A. N. 2010. The influence of internal waves on losses during sound propagation on a shelf. Acoustical Physics , 56 , 703–713.
https://doi.org/10.1134/S1063771010050179

Si , Z. , Zhang , Y. & Fan , Z. 2012. A numerical simulation of shear forces and torques exerted by large-amplitude internal solitary waves on a rigid pile in South China Sea. Applied Ocean Research , 37 , 127–132.
https://doi.org/10.1016/j.apor.2012.05.002

Song , Z. J. , Teng , B. , Gou , Y. , Lua , L. , Shi , Z. M. , Xiao , Y. & Qu , Y. 2011. Comparisons of internal solitary wave and surface wave actions on marine structures and their responses. Applied Ocean Research , 33 , 120–129.
https://doi.org/10.1016/j.apor.2011.01.003

Stastna , M. & Lamb , K. G. 2008. Sediment resuspension mechanisms associated with internal waves in coastal waters. Journal of Geophysical Research , 113 , Art. No. C10016.
https://doi.org/10.1029/2007JC004711

Stober , U. & Moum , J. N. 2011. On the potential for automated realtime detection of nonlinear internal waves from seafloor pressure measurements. Applied Ocean Research , 33 , 275–285.
https://doi.org/10.1016/j.apor.2011.07.007

Talipova , T. G. & Pelinovsky , E. N. 2013. Modeling of propagating long internal waves in an inhomogeneous ocean: the theory and its verification. Fundamental and Applied Hydrophysics , 6 , 46–54 [in Russian].

Talipova , T. , Pelinovsky , E. & Kõuts , T. 1998. Kinematics characteristics of the internal wave field in the Gotland Deep in the Baltic Sea. Oceanology , 38 , 33–42.

Talipova , T. G. , Pelinovsky , E. N. & Kharif , Ch. 2011. Modulational instability of long internal waves of moderate amplitudes in a stratified and horizontally inhomogeneous ocean. JETP Letters , 94 , 182–186.
https://doi.org/10.1134/S0021364011150124

Talipova , T. G. , Pelinovsky , E. N. , Kurkin , A. A. & Kurkina , O. E. 2014. Modeling the dynamics of intense internal waves on the shelf. Izvestiya , Atmospheric and Oceanic Physics , 50 , 630–637.
https://doi.org/10.1134/S0001433814060164

Talipova , T. G. , Kurkina , O. E. , Rouvinskaya , E. A. & Pelinovsky , E. N. 2015. Propagation of solitary internal waves in two-layer ocean of variable depth. Izvestiya , Atmospheric and Oceanic Physics , 51 , 89–97.
https://doi.org/10.1134/S0001433815010107

Teague , W. J. , Carron , M. J. & Hogan , P. J. 1990. A comparison between the Generalized Digital Environmental Model and Levitus climatologies. Journal of Geophysical Research , 95 , 7167–7183.
https://doi.org/10.1029/JC095iC05p07167

Vázquez , A. , Flecha , S. , Bruno , M. , Macías , D. & Navarro , G. 2009. Internal waves and short-scale distribution patterns of chlorophyll in the Strait of Gibraltar and Alborán Sea. Geophysical Research Letters , 36 , Art. No. L23601.
https://doi.org/10.1029/2009GL040959

Vlasenko , V. & Stashchuk , N. 2015. Internal tides near the Celtic sea shelf break: a new look at a well known problem. Deep Sea Research , I , 103 , 24–36.
https://doi.org/10.1016/j.dsr.2015.05.003

Vlasenko , V. , Stashchuk , N. & Hutter , K. 2005. Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge University Press , Cambridge , 348 pp.
https://doi.org/10.1017/CBO9780511535932

Xu , J. , Chen , Z , Xie , J. & Cai , S. 2016. On generation and evolution of seaward propagating internal solitary waves in the northwestern South China Sea. Communications in Nonlinear Science and Numerical Simulation , 32 , 122–136.
https://doi.org/10.1016/j.cnsns.2015.08.013

Zonn , I. S. & Kostianoy , A. G. 2009. Okhotskoe More [Sea of Okhotsk]. Encyclopedia. Publishing house “International relations” , Moscow , 256 pp. [in Russian].

Warn-Varnas , A. , Chin-Bing , S. A. , King , D. B. , Hawkins , J. & Lamb , K. 2009. Effects on acoustics caused by ocean solitons , Part A. Oceanography. Nonlinear Analysis , 71 , e1807–e1817.
https://doi.org/10.1016/j.na.2009.02.104

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:

No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December