headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
Vol. 66, Issue 4
Vol. 66, Issue 3
Vol. 66, Issue 2
Vol. 66, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Characterization of electron beam cross-linked ethylene–octene copolymer composites with carbon nanotubes; pp. 377–382

(Full article in PDF format) https://doi.org/10.3176/proc.2017.4.10


Authors

Ingars Reinholds, Zhenija Roja, Remo Merijs Meri, Janis Zicans

Abstract

The effect of radiation cross-linking on the properties of Engage® 8200 ethylene–octene copolymer (EOC) with multi-walled carbon nanotube (CNT) nanocomposites was evaluated. An ultra-sound assisted technique combined with thermoplastic mixing was used to make EOC/CNT composites with a wide ratio of CNT concentrations (0 to 15 wt%). Composite films were irradiated by 5 MeV accelerated electrons at relatively high doses (150 and 300 kGy), and their structure and mechanical and dielectric properties were compared. Gel fraction measurements indicated dominant cross-linking of EOC with the rise of the absorbed dose. Cross-linking as well as chain scission of macromolecules in the presence of CNTs caused a certain change in mechanical properties. Dielectric measurements indicated a decrease in ac conductivity and a change in dielectric permittivity, mainly associated with prevented charge movements between CNTs incorporated in the spatially cross-linked macromolecular structure of EOC compared to that of unirradiated EOC/CNT composites.

Keywords

ionizing radiation, ethylene–octene copolymer, carbon nanotubes, mechanical and thermal properties, dielectric characteristics.

References

   1. Nambiar , S. and Yeow , J. T. Polymer-composite materials for radiation protection. Appl. Mater. Interfaces , 2012 , 4 , 5717–5726.
https://doi.org/10.1021/am300783d

   2. Kasani , H. , Khodabakhsh , R. , Ahmadi , M. T. , Ochbelagh , D. R. , and Ismail , R. Electrical properties of MWCNT/HDPE composite-based MSM structure under neutron irradiation. J. Electron. Mater. , 2017 , 46 , 2548–2555.
https://doi.org/10.1007/s11664-017-5346-7

   3. Huang , G. , Ni , Z. , Chen , G. , Li , G. , and Zhao , Y. Investigation of irradiated graphene oxide/ultra-high-molecular-weight polyethylene nanocomposites by ESR and FTIR spectroscopy. Fuller. Nanotub. Car. N. , 2016 , 24 , 698–704.
https://doi.org/10.1080/1536383X.2016.1229310

   4. Suarez , J. C. M. and Mano , E. B. Brittle–ductile transition of gamma-irradiated recycled polyethylenes blend. Polym. Test. , 2000 , 19(6) , 607–616.
https://doi.org/10.1016/S0142-9418(99)00031-8

   5. Suljovrujic , E. Dielectric study of post-irradiation effects in gamma-irradiated polyethylenes. Rad. Phys. Chem. , 2010 , 79(7) , 751–757.
https://doi.org/10.1016/j.radphyschem.2010.02.008

   6. Castell , P. , Martinez-Morlanes , M. J. , Alonso , P. J. , Martinez , M. T. , and Puertolas , J. A. A novel approach to the chemical stabilization of gamma-irradiated ultrahigh molecular weight polyethylene using arc-discharge multi-walled carbon nanotubes. J. Mater. Sci , 2013 , 48 , 6549–6557.
https://doi.org/10.1007/s10853-013-7451-1

   7. Kolanthai , E. , Bose , S. , Bhagyashree , K. S. , Bhat , S. V. , Asokan , K. , Kanjilal , D. , and Chatterjee , K. Graphene scavenges free radicals to synergistically enhance structural properties in a gamma-irradiated polyethylene composite through enhanced interfacial interactions. PCCP , 2015 , 17 , 22900–22910.
https://doi.org/10.1039/C5CP02609A

   8. Ghafoor , B. , Mehmood , M. S. , Shahid , U. , Baluch , M. A. , and Yasin , T. Influence of γ-ray modified MWCNTs on the structural and thermal properties of high-density polyethylene. Rad. Phys. Chem. , 2016 , 125 , 145–150.
https://doi.org/10.1016/j.radphyschem.2016.04.004

   9. Yang , J. , Li , X. , Liu , C. , Rui , E. , and Wang , L. Effects of electron irradiation on LDPE/MWCNT composites. Nucl. Instrum. Meth. B , 2015 , 365 , 55–60.
https://doi.org/10.1016/j.nimb.2015.04.013

10. Zhai , Y. , Zhang , R. , Yang , W. , and Yang , M. Effects of interphase on the dispersion of MWCNTs in ethylene-α-octene copolymers revealed by solid-state NMR spectroscopy. Polymer , 2017 , 114 , 44–53.
https://doi.org/10.1016/j.polymer.2017.02.076

11. Sedláková , Z. , Clarizia , G. , Bernardo , P. , Jansen , J. C. , Slobodian , P. , Svoboda , P. , et al. Carbon nanotube- and carbon fiber-reinforcement of ethylene-octene copolymer membranes for gas and vapor separation. Membranes , 2014 , 4(1) , 20–39.
https://doi.org/10.3390/membranes4010020

12. Vasileiou , A. A. , Kontopoulou , M. , Gui , H. , and Docoslis , A. Correlation between the length reduction of carbon nanotubes and the electrical percolation threshold of melt compounded polyolefin composites. Appl. Mater. Interfaces , 2015 , 7 , 1624–1631.
https://doi.org/10.1021/am5071255

13. Petrie , K. G. , Osazuwa , O. , Docoslis , A. , and Kontopoulou , M. Controlling MWCNT partitioning and electrical conductivity in melt compounded poly­propylene/poly (ethylene-co-octene) blends. Polymer , 2017 , 114 , 231–241.
https://doi.org/10.1016/j.polymer.2017.02.087

14. Aghjeh , M. R. , Khonakdar , H. A. , Jafari , S. H. , Zschech , C. , Gohs , U. , and Heinrich , G. Rheological , morphological and mechanical investigations on ethylene octene copolymer toughened polypropylene prepared by continuous electron induced reactive processing. RSC Advances , 2016 , 6 , 24651–24660.
https://doi.org/10.1039/C6RA00359A

15. Li , J. , Peng , J. , Qiao , J. , Jin , D. , and Wei , G. Effect of gamma irradiation on ethylene–octene copolymers. Rad. Phys. Chem. , 2002 , 63(3) , 501–504.
https://doi.org/10.1016/S0969-806X(01)00633-8

16. Ramachandran , P. , Naskar , K. , and Nando , G. B. Effect of electron beam irradiation on the structure–property relationship of ethylene octene copolymer and poly­dimethyl siloxane rubber blends. Rubber Chem. Technol. , 2016 , 89(3) , 477–498.
https://doi.org/10.5254/rct.16.84815

17. Perraud , S. , Vallat , M. F. , and Kuczynski , J. Radiation crosslinking of poly(ethylene-co-octene) with electron beam radiation. Macromol. Mater. Eng. , 2003 , 288 , 117–123.
https://doi.org/10.1002/mame.200390004

18. Svoboda , P. High-temperature study of radiation cross-linked ethylene–octene copolymers. Polymer Bull. , 2017 , 74(1) , 121–144.
https://doi.org/10.1007/s00289-016-1703-6

19. Maqbool , S. A. , Mehmood , M. S. , Mukhtar , S. S. , Baluch , M. A. , Khan , S. , Yasin , T. , and Khan , Y. Dielectric relaxation and ac conduction in γ-irradiated UHMWPE/MWCNTs nano composites: impedance spectroscopy analysis. Rad. Phys. Chem. , 2017 , 134 , 40–46.
https://doi.org/10.1016/j.radphyschem.2017.01.020

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December