headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
» 2017
Vol. 34, Issue 4
Vol. 34, Issue 3
Vol. 34, Issue 2
Vol. 34, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

OXYGEN INFLUENCE ON ESTONIAN KUKERSITE OIL SHALE DEVOLATILIZATION AND CHAR COMBUSTION; pp. 219–231

(Full article in PDF format) https://doi.org/10.3176/oil.2017.3.02


Authors

LAURI LOO, BIRGIT MAATEN, DMITRI NESHUMAYEV, ALAR KONIST

Abstract

This work investigated the kinetic parameters of the thermal decom­position of Estonian kukersite oil shale (OS) organic part in air atmo­spheres at various oxygen-nitrogen ratios. During oil shale combustion, two combustion phases were recognized but could not be separated. Thermo­gravimetric analysis (TGA) of oil shale combustion was conducted in nitrogen-based gases at different oxygen concentrations (5–50% O2) and heating rates (1, 10, 30 and 50 K/min). The authors modeled oil shale devolatilization and char combustion at different oxygen concentrations by using a discrete activation energy model. The process could be described by four parallel independent reactions. The activation energies were 105–134 kJ/mol. The combustion rate was found to be dependent on oxygen partial pressure. The power variables of the oxygen concentration for the reaction models were optimized and compared against a unity base case. Using these data, oil shale devolatilization and char combustion in nitrogen-based environments were modeled.

Keywords

oil shale devolatilization, thermogravimetric analysis, oxygen influence, kukersite kerogen, combustion kinetics, parallel reaction model.

References

1. Soone , J. , Doilov , S. Sustainable utilization of oil shale resources and comparison of contemporary technologies used for oil shale processing. Oil Shale , 2003 , 20(3) , 311–323.

2. Siirde , A. Oil shale – global solution or part of the problem? Oil Shale , 2008 , 25(2) , 201–202.
https://doi.org/10.3176/oil.2008.2.01

3. FE032: Capacity and Production of Power Plants. Est. Stat. , 2017. www.stat.ee (accessed February 10 , 2017).

4. Roos , I. , Soosaar , S. , Volkova , A. , Streimikene , D. Greenhouse gas emissioon reduction perspectives in the Baltic States in frames of EU energy and climate policy. Renew. Sust. Energ. Rev. , 2012 , 16(4) , 2133–2146.
https://doi.org/10.1016/j.rser.2012.01.013

5. Dyni , J. R. Geology and resources of some world oil-shale deposits. Oil Shale , 2003 , 20(3) , 193–252.

6. Vandenbroucke , M. , Largeau , C. Kerogen origin , evolution and structure. Org. Geochem. , 2007 , 38(5) , 719–833.
https://doi.org/10.1016/j.orggeochem.2007.01.001

7. Altun , N . , Hiçyilmaz , C. , Hwang , J.-Y. , Suat Bağci , A. , Kök , M. V. Oil shales in the world and Turkey; reserves , current situation and future prospects: A review. Oil Shale , 2006 , 23(3) , 211–227.

8. Konist , A. , Pihu , T. , Neshumayev , D. , Siirde , A. Oil shale pulverized firing: boiler efficiency , ash balance and flue gas composition. Oil Shale , 2013 , 30(1) , 6–18.
https://doi.org/10.3176/oil.2013.1.02

9. Pihu , T. , Konist , A. , Neshumayev , D. , Loosaar , J. , Siirde , A. , Parve , T. , Molodtsov , A. Short-term tests on firing oil shale fuel applying low-temperature vortex technology. Oil Shale , 2012 , 29(1) , 3–17.
https://doi.org/10.3176/oil.2012.1.02

10. Plamus , K. , Soosaar , S. , Ots , A. , Neshumayev , D. Firing Estonian oil shale of higher quality in CFB boilers – environmental and economic impact. Oil Shale , 2011 , 28(1S) , 113–126.
https://doi.org/10.3176/oil.2011.1S.04

11. Konist , A. , Pihu , T. , Neshumayev , D. , Külaots , I. Low grade fuel – oil shale and biomass co-combustion in CFB boiler. Oil Shale , 2013 , 30(2S) , 294–304.
https://doi.org/10.3176/oil.2013.2S.09

12. Pihu , T. , Konist , A. , Neshumayev , D. , Loo , L. Molodtsov , A. , Valtsev , A. Fullscale tests on the co-firing of peat and oil shale in an oil shale fired circulating fluidized bed boiler. Oil Shale (in the press).

13. Pihu , T. , Konist , A. , Neshumayev , D. , Loo , L. , Veinjärv , R. Combustion of Fuel Mixtures in Oil Shale Fired CFBC and PC Boilers. Presentation at International Oil Shale Symposium 2016 , Tallinn , Estonia , 2016.

14. Loo , L. , Maaten , B. , Siirde , A. , Pihu , T. , Konist , A. Experimental analysis of the combustion characteristics of Estonian oil shale in air and oxy-fuel atmospheres. Fuel Process. Technol. , 2015 , 134 , 317–324.
https://doi.org/10.1016/j.fuproc.2014.12.051

15. Burnham , A. K. , Braun , R. L. Global kinetic analysis of complex materials. Energ. Fuel. , 1999 , 13(1) , 1–22.
https://doi.org/10.1021/ef9800765

16. Jamaluddin , A. S. , Truelove , J. S. , Wall , T. F. Modeling of coal devolatilization and its effect on combustion calculations. Combust. Flame ,1985 , 62(1) , 85–89.
https://doi.org/10.1016/0010-2180(85)90095-1

17. Anthony , D. B. , Howard , J. B. , Hottel , H. C. , Meissner , H. P. Rapid devolatilization and hydrogasification of bituminous coal. Fuel , 1976 , 55(2) , 121–128.
https://doi.org/10.1016/0016-2361(76)90008-9

18. Sundararaman , P. , Merz , P. H. , Mann , R. G. Determination of kerogen activation energy distribution. Energ. Fuel. , 1992 , 6(6) , 793–803.
https://doi.org/10.1021/ef00036a015

19. Kök , M. V. , Pamir , M. R. Comparative pyrolysis and combustion kinetics of oil shales. J. Anal. Appl. Pyrol. , 2000 , 55(2) , 185–194.
https://doi.org/10.1016/S0165-2370(99)00096-0

20. Kök , M. V. , Pokol , G. , Keskin , C. , Madarász , J. , Bagci , S. Combustion characteristics of lignite and oil shale samples by thermal analysis techniques. J. Therm. Anal. Calorim. , 2004 , 76(1) , 247–254.
https://doi.org/10.1023/B:JTAN.0000027823.17643.5b

21. Kök , M. V. , Iscan , A. G. Oil shale kinetics by differential methods. J. Therm. Anal. Calorim. , 2007 , 88(3) , 657–661.
https://doi.org/10.1007/s10973-006-8027-y

22. Liu , Q. Q. , Han , X. X. , Li , Q. Y. , Huang , Y. R. , Jiang , X. M. TG-DSC analysis of pyrolysis process of two Chinese oil shales. J. Therm. Anal. Calorim. , 2014 , 116(1) , 511–517.
https://doi.org/10.1007/s10973-013-3524-2

23. Jiang , X. M. , Cui , Z G. , Han , X. X. , Yu , H. L. Thermogravimetric investigation on combustion characteristics of oil shale and high sulphur coal mixture. J. Therm. Anal. Calorim. , 2006 , 85(3) , 761–764.
https://doi.org/10.1007/s10973-005-7151-4

24. Yan , J. , Jiang , X. , Han , X. , Liu , J. A TG–FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen. Fuel , 2013 , 104 , 307–317.
https://doi.org/10.1016/j.fuel.2012.10.024

25. Han , X. X. , Jiang , X M. , Cui , Z. G. Mathematical model of oil shale particle combustion , Combust. Theor. Model. , 2006 , 10(1) , 145–154.
https://doi.org/10.1080/13647830500327616

26. Aboulkas , A. , El Harfi , K. Study of the kinetics and mechanisms of thermal decomposition of Moroccan Tarfaya oil shale and its kerogen. Oil Shale , 2008 , 25(4) , 426–443.
https://doi.org/10.3176/oil.2008.4.04

27. Yörük , C. R. , Meriste , T. , Trikkel , A. , Kuusik , R. Oxy-fuel combustion of Estonian oil shale: kinetics and modeling. Energy Procedia , 2016 , 86 , 124–133.
https://doi.org/10.1016/j.egypro.2016.01.013

28. Liu , Y. , Wang , C. , Che , D. Ignition and kinetics analysis of coal combustion in low oxygen concentration. Energ. Source. Part A , 2012 , 34(9) , 810–819.
https://doi.org/10.1080/15567031003645585

29. Li , Q. , Zhao , C. , Chen , X. , Wu , W. , Li , Y. Comparison of pulverized coal combustion in air and in O2/CO2 mixtures by thermo-gravimetric analysis. J. Anal. Appl. Pyrol. , 2009 , 85(1–2) , 521–528.
https://doi.org/10.1016/j.jaap.2008.10.018

30. Bai , F. , Sun , Y. , Liu , Y. Thermogravimetric analysis of Huadian oil shale combustion at different oxygen concentrations. Energ. Fuel. , 2016 , 30(6) , 4450–4456.
https://doi.org/10.1021/acs.energyfuels.5b02888

31. Konist , A. , Valtsev , A. , Loo , L. , Pihu , T. , Liira , M. , Kirsimäe , K. Influence of oxy-fuel combustion of Ca-rich oil shale fuel on carbonate stability and ash composition. Fuel , 2015 , 139 , 671–677.
https://doi.org/10.1016/j.fuel.2014.09.050

32. Goldfarb , J. L. , D’Amico , A. , Culin , C. , Suuberg , E. M. , Külaots , I. Oxidation kinetics of oil shale semicokes: reactivity as a function of pyrolysis temperatuure and shale origin. Energ. Fuel. , 2013 , 27 , 666–672.
https://doi.org/10.1021/ef3015052

33. Di Blasi , C. Combustion and gasification rates of lignocellulosic chars. Prog. Energ. Combust. , 2009 , 35(2) , 121–140.
https://doi.org/10.1016/j.pecs.2008.08.001

34. Han , X. , Kulaots , I. , Jiang , X. , Suuberg , E. M. Review of oil shale semicoke and its combustion utilization. Fuel , 2014 , 126 , 143–161.
https://doi.org/10.1016/j.fuel.2014.02.045

35. Murphy , J. J. , Shaddix , C. R. Combustion kinetics of coal chars in oxygenenriched environments. Combust. Flame , 2006 , 144 , 710–729.
https://doi.org/10.1016/j.combustflame.2005.08.039

36. Beeston , G. Kinetics of coal combustion: the influence of oxygen concentration on the burning-out times of single particles. J. Phys. Chem-US , 1963 , 67(6) , 1349–1355.
https://doi.org/10.1021/j100800a045

37. Bews , I. M. , Hayhurst , A. N. , Richardson , S. M. , Taylor , S. G. The order , Arrhenius parameters , and mechanism of the reaction between gaseous oxygen and solid carbon. Combust. Flame , 2001 , 124(1–2) , 231–245.
https://doi.org/10.1016/S0010-2180(00)00199-1

38. Vamvuka , D. , Kakaras , E. , Kastanaki , E. , Grammelis , P. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel , 2003 , 82(15–17) , 1949–1960.
https://doi.org/10.1016/S0016-2361(03)00153-4

39. Sfakiotakis , S. , Vamvuka , D. Development of a modified independent paralleel reactions kinetic model and comparison with the distributed activation energy model for the pyrolysis of a wide variety of biomass fuels. Bioresource Technol. , 2015 , 197 , 434–442.
https://doi.org/10.1016/j.biortech.2015.08.130

40. Yang , J. , Zhang , X. , Zhao , H. , Shen , L. Non-linear relationship between combustion kinetic parameters and coal quality. J. Zhejiang Univ. Sci. A , 2012 , 13(5) , 344–352.
https://doi.org/10.1631/jzus.A1100232

41. Branca , C. , Di Blasi , Global kinetics of wood char devolatilization and combustion. Energ. Fuel. , 2003 , 17(6) , 1609–1615.
https://doi.org/10.1021/ef030033a

 
Back

Current Issue: Vol. 36, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December