headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
» 2017
Vol. 34, Issue 4
Vol. 34, Issue 3
Vol. 34, Issue 2
Vol. 34, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

SIMULATION INVESTIGATION OF SINGLE OIL SHALE PARTICLES DRYING IN SUPERHEATED STEAM AND EXPERIMENTAL VALIDATION; pp. 232–249

(Full article in PDF format) https://doi.org/10.3176/oil.2017.3.03


Authors

LIANGZHI XIA, HONGCHUN ZHANG, JUN HE, YIBIN YAO, CAIYUAN YU

Abstract

Oil shale is an important unconventional energy and has enormous reserves in the world. However, the high moisture content reduces the efficiency of oil production in the pyrolysis process. In this paper, experi­mental and numerical studies were conducted on the drying performance of single Liu Shu River oil shale particles in superheated steam. A 3-D model was developed to simulate the heat and mass transfer process inside the particle, taking into account its property of anisotropy transfer. Generally, it is concluded that the moisture removal rate increases as the steam tem­perature increases, while increasing the particle size decreases the moisture removal rate. In the whole drying process, the decreasing drying rate period was longer than the constant drying rate period. The anisotropy had an influence on moisture transfer rather than heat transfer process. The moisture content profiles and temperature fields inside the particle were determined at selected times. Several experiments were carried out under the conditions of different temperatures (463–483 K) and particle sizes (5–9 mm). It was found that the developed model predictions agreed well with the experimental data. It is significant to get the microscopic parameters for the investigation of oil shale drying in superheated steam fluidized bed.

Keywords

oil shale particle drying, superheated steam, heat and mass transfer, anisotropy.

References

 1.     Hilger , J. Combined utilization of oil shale energy and oil shale minerals within the production of cement and other hydraulic binders. Oil Shale , 2003 , 20(3S) , 347–355.

2.     Chen , M. , Cheng , Y. , Li , W. Exploitation and utilization of oil shale in the coal measure strata of the Haishiwan mine , Yaojie coalfield , China. Oil Shale , 2015 , 32(4) , 335–355.
https://doi.org/10.3176/oil.2015.4.04

3.     Golubev , N. Solid oil shale heat carrier technology for oil shale retorting. Oil Shale , 2003 , 20(3S) , 324–332.

4.     Volkov , E. , Potapov , O. The optimal process to utilize oil shale in power industry. Oil Shale , 2000 , 17(3) , 252–260.

5.     Van Deventer , H. C. , Heijmans , R. M. H. Drying with superheated steam. Dry. Technol. , 2001 , 19(8) , 2033–2045.
https://doi.org/10.1081/DRT-100107287

6.     Stokie , D. , Meng , W. W , Bhattacharya , S. Comparison of superheated steam and air fluidized-bed drying characteristics of Victorian brown coals. Energ. Fuel. , 2013 , 27(11) , 6598–6606.
https://doi.org/10.1021/ef401649j

7.     Rordprapat , W. , Nathakaranakule , A. , Tia , W. Comparative study of fluidized bed paddy drying using hot air and superheated steam. J. Food Eng. , 2005 , 71(1) , 28–36.
https://doi.org/10.1016/j.jfoodeng.2004.10.014

8.     Katalambula , H. , Gupta , R. Low-grade coals: a review of some prospective upgrading technologies. Energ. Fuel. , 2009 , 23(7) , 3392–3405.
https://doi.org/10.1021/ef801140t

9.     Chen , Z. , Agarwal , P. K. , Agnew , J. B. Steam drying of coal. Part 2. Modeling the operation of a fluidized bed drying unit. Fuel , 2001 , 80(2) , 209–223.
https://doi.org/10.1016/S0016-2361(00)00081-8

10. Messai , S. , Sghaier , J. , Lecomte , D. , Belghith , A. Drying kinetics of a porous spherical particle and the inversion temperature. Dry. Technol. , 2008 , 26(2) , 157–167.
https://doi.org/10.1080/07373930701831127

11. Suvarnakuta , P. , Devahastin , S. , Mujumdar , A. S. A mathematical model for low-pressure superheated steam drying of a biomaterial. Chem. Eng. Process. , 2007 , 46(7) , 675–683.
https://doi.org/10.1016/j.cep.2006.09.002

12. Zhang , K. , You , C. Experimental and numerical investigation of convective drying of single coarse lignite particles. Energ. Fuel. , 2010 , 24(12) , 6428–6436.
https://doi.org/10.1021/ef101198k

13. Chen , Z. , Wu , W. , Agarwal , P. K. Steam-drying of coal. Part 1. Modeling the behavior of a single particle. Fuel , 2000 , 79(8) , 961–974.
https://doi.org/10.1016/S0016-2361(99)00217-3

14. Looi , A. Y. , Golonka , K. , Rhodes , M. Drying kinetics of single porous particles in superheated steam under pressure. Chem. Eng. J. , 2002 , 87(3) , 329–338.
https://doi.org/10.1016/S1385-8947(01)00244-3

15. Volchkov , E. P. , Leontiev , A. I. , Makarova , S. N. Finding the inversion tem­perature for water evaporation into an air–steam mixture. Heat Mass Transfer , 2007 , 50(11–12) , 2101–2106.
https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.010

16. Debbissi , C. , Orfi , J. , Nasrallah , S. B. Evaporation of water by free or mixed convection into humid air and superheated steam. Heat Mass Transfer , 2003 , 46(24) , 4703–4715.
https://doi.org/10.1016/S0017-9310(03)00092-9

17. Costa , V. A. F. , Silva , F. N.D. On the rate of evaporation of water into a stream of dry air , humidified air and superheated steam , and the inversion temperature. Heat Mass Transfer , 2003 , 46(19) , 3717–3726.
https://doi.org/10.1016/S0017-9310(03)00174-1

18. Henriksen , U. , Hindgaul , C. , Qvale , B. , Fjellerup , J. , Jensen , A. D. Investigation of the anisotropic behavior of wood char particles during gasification. Energ. Fuel. , 2006 , 20(5) , 2233–2238.
https://doi.org/10.1021/ef060140f

19. Topgaard , D. , Söderman , O. Self-diffusion in two-and three-dimensional powders of anisotropic domains: an NMR study of the diffusion of water in cellulose and starch. J. Phys. Chem-US , 2002 , 106(46) , 11887–11892.
https://doi.org/10.1021/jp020130p

20. Prachayawarakorn , S. , Prachayawasin , P. , Soponronnarit , S. Heating process of soybean using hot-air and superheated-steam fluidized-bed dryers. Food Sci. Technol-LEB , 2006 , 39(7) , 770–778.

21. Jang , J. , Arastoopour , H. CFD simulation of a pharmaceutical bubbling bed drying process at three different scales. Powder Technol. , 2014 , 263 , 14–25.
https://doi.org/10.1016/j.powtec.2014.04.054

22. Soponronnarit , S. , Prachayawarakorn , S. , Rordprapat , W. , Nathakaranakule , A. , Tia , W. A superheated-steam fluidized-bed dryer for parboiled rice: testing of a pilot-scale and mathematical model development. Dry. Technol. , 2006 , 24(11) , 1457–1467.
https://doi.org/10.1080/07373930600952800

23. Sabarez , H. T. Computational modelling of the transport phenomena occurring during convective drying of prunes. J. Food Eng. , 2012 , 111(2) , 279–288.
https://doi.org/10.1016/j.jfoodeng.2012.02.021

24. Messai , S. , Sghaier , J. , El Ganaoui , M.E , Chrusciel , L. , Gabsi , S. Low-pressure superheated steam drying of a porous media. Dry. Technol. , 2015 , 33(1) , 103–110.
https://doi.org/10.1080/07373937.2014.933843
https://doi.org/10.1080/07373937.2014.933844

25. Pakowski , Z. , Adamski , R. , Kokocińska , M. , Kwapisz , S. Generalized desorp­tion equilibrium equation of lignite in a wide temperature and moisture content range. Fuel , 2011 , 90(11) , 3330–3335.
https://doi.org/10.1016/j.fuel.2011.06.044

26. Pawlak-Kruczek , H. , Plutecki , Z. , Michalski , M. Brown coal drying in a fluidized bed applying a low-temperature gaseous medium. Dry. Technol. , 2014 , 32(11) , 1334–1342.
https://doi.org/10.1080/07373937.2014.909845

27. Tütüncü , M. A. , Labuza , T. P. Effect of geometry on the effective moisture trans­fer diffusion coefficient. J. Food Eng. , 1996 , 30(3–4) , 433–447.
https://doi.org/10.1016/S0260-8774(96)00028-3

28. Tang , J. , Sokhansanj , S. Moisture diffusivity in laird lentil seed components. T. ASAE , 1993 , 36(6) , 1791–1798.
https://doi.org/10.13031/2013.28524

29. Duffy , B. L. , Haynes , B. S. Transport mechanisms in oil shale drying and pyrolysis. Energ. Fuel. , 1992 , 6(6) , 831–835.
https://doi.org/10.1021/ef00036a021

30. Azzouz , S. , Guizani , A. , Jomaa , W. , Belghith , A. Moisture diffusivity and drying kinetic equation of convective drying of grapes. J. Food Eng. , 2002 , 55(4) , 323–330.
https://doi.org/10.1016/S0260-8774(02)00109-7

31. Weissberg , H. L. Effective diffusion coefficient in porous media. J. Appl. Phys. , 1963 , 34(9) , 2636–2639.
https://doi.org/10.1063/1.1729783

32.          Kim , J.-H. , Ochoa , J. A. , Whitaker , S. Diffusion in anisotropic porous media. Transport Porous Med. , 1987 , 2(4) , 327–356.
https://doi.org/10.1007/BF00136440

 
Back

Current Issue: Vol. 36, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December