headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
» 2017
Vol. 34, Issue 4
Vol. 34, Issue 3
Vol. 34, Issue 2
Vol. 34, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

FULL-SCALE TESTS ON THE CO-FIRING OF PEAT AND OIL SHALE IN AN OIL SHALE FIRED CIRCULATING FLUIDIZED BED BOILER; pp. 250–262

(Full article in PDF format) https://doi.org/10.3176/oil.2017.3.04


Authors

TÕNU PIHU, ALAR KONIST, DMITRI NESHUMAYEV, LAURI LOO, ARTJOM MOLODTSOV, ALEKSANDR VALTSEV

Abstract

The paper presents analysis of data obtained from tests of oil shale (OS) and peat co-combustion in a full-scale 250 MWth (useful heat output) circulating fluidized bed (CFB) boiler. The tests were conducted at nominal boiler load, with peat thermal input up to 30%. During the experiments, gas analysis was performed and ash samples were collected. The specific con­sumption of the oil shale and peat blend per useful heat and gross electricity was calculated and other techno-economic characteristics were determined.
   It was found that the co-combustion of oil shale and wet peat increased the CO emission to the level of 60 mg/Nm3. The NOx concentration increased from 120 to 165 mg/Nm3. The SO2 and HCl emissions remained at a very low level – below 20 mg/Nm3. A significant ash reduction, approximately 4%, was measured in the case of a 30% peat content. Due to the high peat moisture, the flue gas volume increased 5–10%. As a result of addition of peat, the content of particulate matter (PM) 10/2.5 was also lower than that by conventional oil shale CFB firing. Oil shale and peat co-combustion can be considered as a viable option and near-term solution for reducing the environmental impact of oil shale power production.

Keywords

oil shale, peat, biomass, co-combustion, particulate matter, ash composition, emissions.

References

1.       FE032: Capacity and production of power plants. Statistics Estonia , 2017. [Online]. Available: www.stat.ee. pub.stat.ee. (accessed 10 Feb 2017).

2.       Roos , I. , Soosaar , S. , Volkova , A , Streimikene , D. Greenhouse gas emission reduction perspectives in the Baltic States in frames of EU energy and climate policy. Renew. Sustain. Energy Rev. , 2012 , 16(4) , 2133–2146.
https://doi.org/10.1016/j.rser.2012.01.013

3.       Loo , L. , Maaten , B. , Siirde , A. , Pihu , T. , Konist , A , Experimental analysis of the combustion characteristics of Estonian oil shale in air and oxy-fuel atmospheres. Fuel Process. Technol. , 2015 , 134 , 317–324.
https://doi.org/10.1016/j.fuproc.2014.12.051

4.       Konist , A. , Valtsev , A. , Loo , L. , Pihu , T. , Liira , M. , Kirsimäe , K. Influence of oxy-fuel combustion of Ca-rich oil shale fuel on carbonate stability and ash composition. Fuel , 2015 , 139 , 671–677.
https://doi.org/10.1016/j.fuel.2014.09.050

5.       Konist , A. , Pihu , T. , Neshumayev , D. , Siirde , A. Oil shale pulverized firing: Boiler efficiency , ash balance and flue gas composition. Oil Shale , 2013 , 30(1) , 6–18.

6.       Konist , A. , Maaten , B. , Loo , L. , Neshumayev , D. , Pihu , T. Mineral sequestra­tion of CO2 by carbonation of Ca-rich oil shale ash in natural conditions. Oil Shale , 2016 , 33(3) , 248–259.
https://doi.org/10.3176/oil.2016.3.04

7.       Hotta , A. , Parkkonen , R. , Hiltunen , M. , Arro , H. , Loosaar , J. , Parve , T. , Pihu , T. , Prikk , A. , Tiikma , T. Experience of Estonian oil shale combustion based on CFB technology at Narva Power Plants. Oil Shale , 2005 , 22(4) , 381–397.

8.       Lüschen , A. , Madlener , R. Economic viability of biomass cofiring in new hard-coal power plants in Germany. Biomass Bioenerg. , 2013 , 57 , 33–47.
https://doi.org/10.1016/j.biombioe.2012.11.017

9.       Konist , A. , Pihu , T. , Neshumayev , D. , Külaots , I. Low grade fuel – oil shale and biomass co-combustion in CFB boiler. Oil Shale , 2013 , 30(2S) , 294–304.
https://doi.org/10.3176/oil.2013.2S.09

10.    Krzywanski , J. , Rajczyk , R. , Bednarek , M. , Wesolowska , M. , Nowak , W. Gas emissions from a large scale circulating fluidized bed boilers burning lignite and biomass. Fuel Process. Technol. , 2013 , 116 , 27–34.
https://doi.org/10.1016/j.fuproc.2013.04.021

11.    Sahu , S. G. , Chakraborty , N. , Sarkar , P. Coal–biomass co-combustion: An overview. Renew. Sust. Energ. Rev. , 2014 , 39 , 575–586.
https://doi.org/10.1016/j.rser.2014.07.106

12.    Hupa , M. Interaction of fuels in co-firing in FBC. Fuel , 2005 , 84(10) , 1312–1319.
https://doi.org/10.1016/j.fuel.2004.07.018

13.    Hupa , M. Ash behavior in fluidized bed combustion – recent research high­lights. In: Proceedings of the 9th International Conference on Circulating Fluidized Beds , 13–16 May 2008 , Hamburg , Germany , 845–856.

14.    Yrjas , P. , Skrifvars , B.-J. , Hupa , M. , Roppo , J. , Nylund , M. , Vainikka , P. Chlorine in deposits during co-firing of biomass , peat , and coal in a full-scale CFBC boiler. From 18th International Conference on Fluidized Bed Combus­tion , Toronto , Ontario , Canada , May 22–26 , 2005 , 679–687. ASME Proceed­ings , 2005.
https://doi.org/10.1115/FBC2005-78097

15.    Doshi , V. , Vuthaluru , H. B. , Korbee , R. , Kiel , J. H. A. Development of a model­ing approach to predict ash formation during co-firing of coal and biomass. Fuel Process. Technol. , 2009 , 90(9) , 1148–1156.
https://doi.org/10.1016/j.fuproc.2009.05.019

16.    Pronobis , M. The influence of biomass co-combustion on boiler fouling and efficiency. Fuel , 2006 , 85(4) , 474–480.
https://doi.org/10.1016/j.fuel.2005.08.015

17.    Lu , G. , Yan , Y. , Cornwell , S. , Whitehouse , M. , Riley , G. Impact of co-firing coal and biomass on flame characteristics and stability. Fuel , 2008 , 87(7) , 1133–1140.
https://doi.org/10.1016/j.fuel.2007.07.005

18.    Plamus , K. , Ots , A. , Pihu , T. , Neshumayev , D. Firing Estonian oil shale in CFB boilers - ash balance and behaviour of carbonate minerals. Oil Shale , 2011 , 28(1) , 58–67.
https://doi.org/10.3176/oil.2011.1.07

19.    Kuusik , R. , Uibu , M. , Kirsimäe , K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers. Oil Shale , 2005 , 22(4S) , 407–419.

20.    Pihu , T. , Arro , H. , Prikk , A. , Rootamm , R. , Konist , A. Corrosion of air preheater tubes of oil shale CFB boiler. Part I. Dew point of flue gas and low-temperature corrosion. Oil Shale , 2009 , 26(1) , 5–12.
https://doi.org/10.3176/oil.2009.1.01

21.    Shao , Y. , Wang , J. , Xu , C. , Zhu , J. , Preto , F. , Tourigny , G. , Badour , C. , Li , H. An experimental and modeling study of ash deposition behaviour for co-firing peat with lignite. Appl. Energ. , 2011 , 88(8) , 2635–2640.
https://doi.org/10.1016/j.apenergy.2011.02.006

22.    Baxter , L. L. , Miles , T. R. , Miles Jr. ,  T. R. , Jenkins , B. M. , Milne , T. , Dayton , D. , Bryers , R. W. , Oden , L. L. The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Process. Technol. , 1998 , 54(1–3) , 47–78.
https://doi.org/10.1016/S0378-3820(97)00060-X

23.    Badour , C. , Gilbert , A. , Xu , C. , Li , H. , Shao , Y. , Tourigny , G. , Preto , F. Com­bustion and air emissions from co-firing a wood biomass , a Canadian peat and a Canadian lignite coal in a bubbling fluidised bed combustor. Can. J. Chem. Eng. , 2012 , 90(5) , 1170–1177.
https://doi.org/10.1002/cjce.20620

24.    Parve , T. , Loosaar , J. , Mahhov , M. , Konist , A. Emission of fine particulates from oil shale fired large boilers. Oil Shale , 2011 , 28(1S) , 152–161.
https://doi.org/10.3176/oil.2011.1S.07

 Plamus , K. , Soosaar , S. , Ots , A. , Neshumayev , D. Firing Estonian oil shale of higher quality in CFB boilers – environmental and economic impact. Oil Shale , 2011 , 28(1S) , 113–126.
https://doi.org/10.3176/oil.2011.1S.04

 
Back

Current Issue: Vol. 36, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December