headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
» 2017
Vol. 34, Issue 4
Vol. 34, Issue 3
Vol. 34, Issue 2
Vol. 34, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

SELF-CEMENTING PROPERTIES AND ALKALI ACTIVATION OF ENEFIT280 SOLID HEAT CARRIER RETORTING ASH; pp. 263–278

(Full article in PDF format) https://doi.org/10.3176/oil.2017.3.05


Authors

PEETER PAAVER, PÄÄRN PAISTE, RIHO MÕTLEP, KALLE KIRSIMÄE

Abstract

The composition and cementitious properties upon hydration and alkali activation of the solid heat carrier (SHC) ash produced in a new Enefit280 retort was studied. The Enefit280 waste heat boiler (WHB) ash is different from other SHC solid residues. It does not contain residual organics, but is characterized by a low content of reactive Ca-phases and the soluble amorphous (aluminium)-silicate phase/glass material. Cementation of Enefit280 ash upon hydration with plain water is limited and its uniaxial compressive strength stays < 4 MPa after 28 days of curing. Ash mixtures activated with sodium silicate based mixtures show higher compressive strength values, reaching > 10 MPa after 28 days of curing. The Enefit280 ash, compared to other ash types forming in the Estonian oil shale pro­ces­sing industry, has significantly poorer self-cementing properties. This needs to be taken into account when designing waste depositories, if other types of ash with better self-cementing properties are not co-deposited with this ash.

Keywords

Enefit280 ash, uniaxial compressive strength, ettringite, geopolymer

References

 1.     Liive , S. Oil shale energetics in Estonia. Oil Shale , 2007 , 24(1) , 1–4.

2.     Ots , A. Oil Shale Fuel Combustion. Tallinna Raamatutrükikoda , Tallinn , 2006.

3.     Soone , J. , Doilov , S. Sustainable utilization of oil shale resources and com­parison of contemporary technologies used for oil shale processing. Oil Shale , 2003 , 20(3S) , 311–323.

4.     Mõtlep , R. , Kirsimäe , K. , Talviste , P. , Puura , E. , Jürgenson , J. Mineral com­posi­tion of Estonian oil shale semi-coke sediments. Oil Shale , 2007 , 24(3) , 405–422.

5.     Golubev , N. Solid oil shale heat carrier technology for oil shale retorting. Oil Shale , 2003 , 20(3) , 324–332.

6.     Veiderma , M. Estonian oil shale – Resources and usage. Oil Shale , 2003 , 20(3S) , 295–303.

7.     Aarna , I. Developments in production of synthetic fuels out of Estonian oil shale. Energ. Environ. , 2011 , 22(5) , 541–552.
https://doi.org/10.1260/0958-305X.22.5.541

8.     Garcia-Lodeiro , I. , Fernandez-Jimenez , A. , Blanco , M. T. , Palomo , A. FTIR study of the sol-gel synthesis of cementitious gels: C–S–H and N–A–S–H. J. Sol-Gel Sci. Techn. , 2008 , 45(1) , 63–72.

9.     Fernández-Carrasco , L. , Torrens-Martín , D. , Morales , L. M. , Martínez-Ramírez , S. Infrared spectroscopy in the analysis of building and construction materials. In: Infrared Spectroscopy – Materials Science , Engineering and Technology (Theophanides , T. , ed.) , InTech , Rijeka , Croatia , 2012 , 369–382.
https://doi.org/10.5772/36186

10. Lodeiro , I. G. , Macphee , D. E. , Palomo , A. , Fernandez-Jimenez , A. Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cement Concrete Res. , 2009 , 39(3) , 147–153.
https://doi.org/10.1016/j.cemconres.2009.01.003

11. Yu , P. , Kirkpatrick , R. J. , Poe , B. , McMillan , P. F. , Cong , X. D. Structure of calcium silicate hydrate (C–S–H): Near- , mid- , and far-infrared spectroscopy. J. Am. Ceram. Soc. , 1999 , 82(3) , 742–748.
https://doi.org/10.1111/j.1151-2916.1999.tb01826.x

12. Rees , C. A. , Provis , J. L. , Lukey , G. C. , van Deventer , J. S. J. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir , 2007 , 23(17) , 9076–9082.
https://doi.org/10.1021/la701185g

13. Lecomte , I. , Henrist , C. , Liegeois , M. , Maseri , F. , Rulmont , A. , Cloots , R. (Micro)-structural comparison between geopolymers , alkali-activated slag cement and Portland cement. J. Eur. Ceram. Soc. , 2006 , 26(16) , 3789–3797.
https://doi.org/10.1016/j.jeurceramsoc.2005.12.021

14. Mõtlep , R. , Sild , T. , Puura , E. , Kirsimäe , K. Composition , diagenetic trans­forma­tion and alkalinity potential of oil shale ash sediments. J. Hazard. Mater. , 2010 , 184(1–3) , 567–573.
https://doi.org/10.1016/j.jhazmat.2010.08.073

15. Paaver , P. , Paiste , P. , Kirsimäe , K. Geopolymeric potential of the Estonian oil shale solid residues: Petroter solid heat carrier retorting ash. Oil Shale , 2016 , 33(4) , 373–392.
https://doi.org/10.3176/oil.2016.4.05

16. Talviste , P. , Sedman , A. , Mõtlep , R. , Kirsimäe , K. Self-cementing properties of oil shale solid heat carrier retorting residue. Waste Manage. Res. , 2013 , 31(6) , 641–647.
https://doi.org/10.1177/0734242X13482033

17. Bityukova , L. , Mõtlep , R. , Kirsimäe , K. Composition of oil shale ashes from pulverized firing and circulating fluidized-bed boiler in Narva Thermal Power Plants , Estonia. Oil Shale , 2010 , 27(4) , 339–353.
https://doi.org/10.3176/oil.2010.4.07

18. Kuusik , R. , Uibu , M. , Kirsimäe , K. , Mõtlep , R. , Meriste , T. Open-air deposition of Estonian oil shale ash: Formation , state of art , problems and prospects for the abatement of environmental impact. Oil Shale , 2012 , 29(4) , 376–403.
https://doi.org/10.3176/oil.2012.4.08

19. Uibu , M. , Somelar , P. , Raado , L.-M. , Irha , N. , Hain , T. , Koroljova , A. , Kuu­sik , R. Oil shale ash based backfilling concrete – strength development , mineral transformations and leachability. Constr. Build. Mater. , 2016 , 102 , Part 1 , 620–630.
https://doi.org/10.1016/j.conbuildmat.2015.10.197

20. Mindess , S. , Young , J. F. , Darwin , D. Concrete. 2nd ed. Prentice Hall , Pearson Education , Inc. , Upper Saddle River , NJ , 2003.

21. Sedman , A. , Talviste , P. , Kirsimäe , K. The study of hydration and carbonation reactions and corresponding changes in the physical properties of co-deposited oil shale ash and semicoke wastes in a small-scale field experiment. Oil Shale , 2012 , 29(3) , 279–294.
https://doi.org/10.3176/oil.2012.3.07

22. Sedman , A. , Talviste , P. , Mõtlep , R. , Jõeleht , A. , Kirsimäe , K. Geotechnical characterization of Estonian oil shale semi-coke deposits with prime emphasis on their shear strength. Eng. Geol. , 2012 , 131–132 , 37–44.
https://doi.org/10.1016/j.enggeo.2012.02.002

23. Anthony , E. J. , Bulewicz , E. M. , Dudek , K. , Kozak , A. The long term behaviour of CFBC ash-water systems. Waste Manage. , 2002 , 22(1) , 99–111.
https://doi.org/10.1016/S0956-053X(01)00059-9

24. Raado , L.-M. , Hain , T. , Liisma , E. , Kuusik , R. Composition and properties of oil shale ash concrete. Oil Shale , 2014 , 31(2) , 147–160.
https://doi.org/10.3176/oil.2014.2.05

25. Provis , J. L. , Bernal , S. A. Alkali–activated binders – chemistry and engineer­ing. Rilem Proc. , 2014 , 92 , 299–327.

26. Clark , B. A. , Brown , P. W. Formation of ettringite from monosubstituted calcium sulfoaluminate hydrate and gypsum. J. Am. Ceram. Soc. , 1999 , 82(10) , 2900–2905.
https://doi.org/10.1111/j.1151-2916.1999.tb02174.x

27. Guo , X. L. , Shi , H. S. , Chen , L. M. , Dick , W. A. Alkali-activated complex binders from class C fly ash and Ca-containing admixtures. J. Hazard. Mater. , 2010 , 173(1–3) , 480–486.
https://doi.org/10.1016/j.jhazmat.2009.08.110

28. Guo , X. L. , Shi , H. S. , Dick , W. A. Compressive strength and microstructural characteristics of class C fly ash geopolymer. Cement Concrete Comp. , 2010 , 32(2) , 142–147.
https://doi.org/10.1016/j.cemconcomp.2009.11.003

29. Mijarsh , M. J. A. , Johari , M. A. M. , Ahmad , Z. A. Effect of delay time and Na2SiO3 concentrations on compressive strength development of geopolymer mortar synthesized from TPOFA. Constr. Build. Mater. , 2015 , 86 , 64–74.
https://doi.org/10.1016/j.conbuildmat.2015.03.078

30. Van Deventer , J. S. J. , Provis , J. L. , Duxson , P. , Lukey , G. C. Reaction mecha­nisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater. , 2007 , 139(3) , 506–513.
https://doi.org/10.1016/j.jhazmat.2006.02.044

31. Aughenbaugh , K. L. , Stutzman , P. , Juenger , M. C. G. Assessment of the glassy phase reactivity in fly ashes used for geopolymer cements. In: Geopolymer Binder Systems (Struble , L. , Hicks , J. K. , eds.) , Selected Technical Papers STP , 1566 , 2013 , ASTM International , West Conshohocken , PA , 2013 , 11–20.
https://doi.org/10.1520/STP156620120105

32. Provis , J. L. , Palomo , A. , Shi , C. J. Advances in understanding alkali-activated materials. Cement Concrete Res. , 2015 , 78 , Part A , 110–125.

 
Back

Current Issue: Vol. 36, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December