ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
How are spring zooplankton and autumn zooplankton influenced by water temperature in a polymictic lake?; pp. 264–278
PDF | https://doi.org/10.3176/proc.2017.3.03

Authors
Juta Haberman, Marina Haldna
Abstract

We singled out spring (season with a water temperature of 4–15 °C) and autumn (15–4 °C), i.e. the seasons with the most variable meteorological conditions, in order to study the development of zooplankton as well as concurrent meteorological conditions (air and water temperature, ice conditions) and their relationships in these seasons. The aims of this study were (1) to review the spring zooplankton versus autumn zooplankton of a shallow polymictic lake; (2) to assess how much the zooplankton of the transition seasons, i.e. spring and autumn, is influenced by water temperature; (3) to clarify what factors are the main drivers of water temperature in such type of lakes. Proceeding from these aims, a long-term (1965–2014) study was conducted in the shallow (mean depth 2.8 m) polymictic Lake Võrtsjärv (Estonia). The main drivers of water temperature were air temperature and ice conditions. The water of the lake warmed up from 4 °C to 15 °C within 48 ± 2 days in spring and it cooled down from 15 °C to 4 °C during 57 ± 1.5 days in autumn. Both the air temperature in the territory of the studied lake and the water temperature in the lake increased while the duration of an ice cover on the lake decreased during the study period. The abundance of zooplankton in the seasons with the highly variable water temperature was also variable and largely dependent on the water temperature. In spring the effect of water temperature was greater than in autumn. Statistical analysis showed that when water temperature rose one degree in spring, the abundance of zooplankton increased by 27%, and when water temperature fell one degree in autumn, zooplankton abundance decreased by 9%. Zooplankton abundance was almost three times as high in spring (922 ind L–1) as in autumn (325 ind L–1) and was dominated by rotifers, small-bodied cladocerans, and juveniles of cyclopoid copepods. The domination of rotifers was more pronounced in spring (92%) than in autumn (70%). The share of cladocerans was negligible in the spring zooplankton (2%) but appreciable (24%) in the autumn zooplankton. The share of copepods in the total zooplankton abundance (6%) was modest and similar in both seasons. A shift (i.e. a marked increase in zooplankton abundance, switch from cold-water to warm-water species) in the abundance of spring zooplankton occurred in spring at a water temperature of about 10 °C (critical time window). A comparable but less conspicuous change (decrease in abundance, switch from warm-water species to cold-water species) was found at the same water temperature in autumn. During the 50 study years, the period with a mean water temperature of 10 °C shifted by 7 days to an earlier date in spring and by 6 days to a later date in autumn.

References

Aberle, N., Bauer, B., Lewandowska, A., Gaedke, U., and Sommer, U. 2012. Warming induces shifts in microzooplankton phenology and reduces time-lags between phytoplankton and protozoan production. Mar. Biol., 159, 2441–2453.
https://doi.org/10.1007/s00227-012-1947-0

Adrian, R. 1997. Calanoid–cyclopoid interactions: evidence from an 11-year field study in a eutrophic lake. Freshwater Biol., 38, 315–325.
https://doi.org/10.1046/j.1365-2427.1997.00215.x

Adrian, R. and Deneke, R. 1996. Possible impact of mild winters on zooplankton succession in eutrophic lakes of the Atlantic European area. Freshwater Biol., 36, 757–770.
https://doi.org/10.1046/j.1365-2427.1996.00126.x

Adrian, R., Walz, N., Hintze, T., Hoeg, S., and Rusche, R. 1999. Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshwater Biol., 41, 621–632.
https://doi.org/10.1046/j.1365-2427.1999.00411.x

Adrian, R., Wilhelm, S., and Gerten, D. 2006. Life-history traits of lake plankton species may govern their phenological response to climate warming. Glob. Change Biol., 12, 652–661.
https://doi.org/10.1111/j.1365-2486.2006.01125.x

Adrian, R., Gerten, D., Huber, V., Wagner, C., and Schmidt, S. R. 2012. Windows of change: temporal scale of analysis is decisive to detect ecosystem responses to climate change. Mar. Biol., 159, 2533–2542.
https://doi.org/10.1007/s00227-012-1938-1

Agasild, H., Zingel, P., Tõnno, I., Haberman, J., and Nõges, T. 2007. Contribution of different zooplankton groups in grazing on phytoplankton in shallow eutrophic Lake Võrtsjärv (Estonia). Hydrobiologia, 584, 167–177.
https://doi.org/10.1007/s10750-007-0575-z

Allan, J. D. 1976. Life history patterns in zooplankton. Am. Nat., 110, 165–180.
https://doi.org/10.1086/283056

Andronikova, I. 1996. Zooplankton characteristics in monitoring of Lake Ladoga. Hydrobiologia, 322, 173–179.
https://doi.org/10.1007/BF00031824

Arvola, L., George, G., Livingstone, D. M., Järvinen, M., Blenckner, T., Dokulil, M. T., et al. 2010. The impact of the changing climate on the thermal characteristics of lakes. In The Impact of Climate Change on European Lakes (George, D. G., ed.), pp. 85–101. Aquatic Ecology Series 4. Springer, Dordrecht–Heidelberg–London–New York.

Barr, C., Tibby, J., Marshall, J. C., Mcgregor, G. B., Moss, P. T., Halverson, G. P., and Fluin, J. 2013. Combining monitoring, models and palaeolimnology to assess ecosystem response to environmental change at monthly to millennial timescales: the stability of Blue Lake, North Stradbroke Island, Australia. Freshwater Biol., 58, 1614–1630.
https://doi.org/10.1111/fwb.12154

Battarbee, R. W., Anderson, N. J., Bennion, H., and Simpson, G. L. 2012. Combining limnological and palaeolimnological data to disentangle the effects of nutrient pollution and climate change on lake ecosystems: problems and potential. Freshwater Biol., 57, 2091–2106.
https://doi.org/10.1111/j.1365-2427.2012.02860.x

Bennion, H., Carvalho, L., Sayer, C. D., Simpson, G. L., and Wischnewski, J. 2012. Identifying from recent sediment records the effects of nutrients and climate on diatom dynamics in Loch Leven. Freshwater Biol., 57, 2015–2029.
https://doi.org/10.1111/j.1365-2427.2011.02651.x

Brandl, Z. 2005. Freshwater copepods and rotifers: predators and their prey. Hydrobiologia, 546, 475–489.
https://doi.org/10.1007/s10750-005-4290-3

Carvalho, L., Miller, C., Spears, B. M., Gunn, I. D. M., Bennion, H., Kirika, A., and May, L. 2012. Water quality of Loch Leven: responses to enrichment, restoration and climate change. Hydrobiologia, 681, 35–47.
https://doi.org/10.1007/s10750-011-0923-x

Chen, C. Y. and Folt, C. L. 1996. Consequences of fall warming for zooplankton overwintering success. Limnol. Oceanogr., 41, 1077–1086.
https://doi.org/10.4319/lo.1996.41.5.1077

Chen, L., Liu, Q., Peng, Z., Hu, Z., Xue, J., and Wang, W. 2012. Rotifer community structure and assessment of water quality in Yangcheng Lake. Chin. J. Oceanol. Limnol., 30, 47–58.
https://doi.org/10.1007/s00343-012-0150-y

Choinski, A., Ptak, M., Skowron, R., and Strzelczak, A. 2015. Changes in ice phenology on Polish lakes from 1961 to 2010 related to location and morphometry. Limnologica, 53, 42–49.
https://doi.org/10.1016/j.limno.2015.05.005

Claska, M. E. and Gilbert, J. J. 1998. The effect of temperature on the response of Daphnia to toxic cyanobacteria. Freshwater Biol., 39, 221–232.
https://doi.org/10.1046/j.1365-2427.1998.00276.x

Dabrowski, M., Marszelewski, W., and Skowron, R. 2004. The trends and dependencies between air and water temperatures in lakes in northern Poland from 1961–2000. Hydrol. Earth Syst. Sci., 8, 79–87.
https://doi.org/10.5194/hess-8-79-2004

Davidson, T. A., Bennion, H., Jeppesen, E., Clarke, G. H., Sayer, C. D., Morley, D., et al. 2011. The role of cladocerans in tracking long-term change in shallow lake trophic status. Hydrobiologia, 676, 299–315.
https://doi.org/10.1007/s10750-011-0851-9

De Stasio, B. T. 2004. Diapause in calanoid copepods: within-clutch hatching patterns. J. Limnol., 63, 26–31.
https://doi.org/10.4081/jlimnol.2004.s1.26

Deng, J., Qin, B., Paerl, H. W., Zhang, Y., Ma, J., and Chen, Y. 2014. Earlier and warmer springs increase cyanobacterial (Microcystis spp.) blooms in subtropical Lake Taihu, China. Freshwater Biol., 59, 1076–1085.
https://doi.org/10.1111/fwb.12330

Dokulil, M. T., Herzig, A., Somogyi, B., Vörös, L., Donabaum, K., May, L., and Nõges, T. 2014. Winter conditions in six European shallow lakes: a comparative synopsis. Estonian J. Ecol., 63, 111–129.
https://doi.org/10.3176/eco.2014.3.01

Domisch, S., Jähnig, S. C., and Haase, P. 2011. Climate-change winners and losers: stream macroinvertebrates of a submontane region in Central Europe. Freshwater Biol., 56, 2009–2020.
https://doi.org/10.1111/j.1365-2427.2011.02631.x

Dupuis, A. P. and Hann, B. J. 2009. Climate change, diapause termination and zooplankton population dynamics: an experimental and modelling approach. Freshwater Biol., 54, 221–235.
https://doi.org/10.1111/j.1365-2427.2008.02103.x

Ger, K. A., Hansson, L.-A., and Lürling, M. 2014. Understanding cyanobacteria–zooplankton interactions in a more eutrophic world. Freshwater Biol., 59, 1783–1798.
https://doi.org/10.1111/fwb.12393

Gerten, D. and Adrian, R. 2002. Species-specific changes in the phenology and peak abundance of freshwater copepods in response to warm summers. Freshwater Biol., 47, 2163–2173.
https://doi.org/10.1046/j.1365-2427.2002.00970.x

Ginter, K., Kangur, K., Kangur, A., Kangur, P., and Haldna, M. 2011. Diet patterns and ontogenetic diet shift of pikeperch, Sander lucioperca (L.) fry in lakes Peipsi and Võrtsjärv (Estonia). Hydrobiologia, 660, 79–91.
https://doi.org/10.1007/s10750-010-0393-6

Green, J. 1993. Diversity and dominance in planktonic rotifers. Hydrobiologia, 255256, 345–352.
https://doi.org/10.1007/BF00025859

Gulati, R. D. 1978. The ecology of common planktonic Crustacea of the freshwaters in the Netherlands. Hydrobiologia, 59, 101–112.
https://doi.org/10.1007/BF00020770

Haberman, J. 1998. Zooplankton of Lake Võrtsjärv. Limnologica, 28, 49–65.

Haberman, J. and Haldna, M. 2014. Indices of zooplankton community as valuable tools in assessing the trophic state and water quality of eutrophic lakes: long term study of Lake Võrtsjärv. J. Limnol., 73, 61–71.
https://doi.org/10.4081/jlimnol.2014.828

Haberman, J. and Virro, T. 2004. Zooplankton. In Lake Võrtsjärv (Haberman, J., Pihu, E., and Raukas, A., eds), pp. 233–251. Estonian Encyclopedia Publishers, Tallinn.

Herzig, A. 1994. Predator–prey relationships within the pelagic community of Neusiedler See. Hydrobiologia, 275276, 81–96.
https://doi.org/10.1007/BF00026702

Hobæk, A., Løvik, J. E., Rohrlack, T., Moe, S. J., Grung, M., Bennion, H., et al. 2012. Eutrophication, recovery and temperature in Lake Mjøsa: detecting trends with monitoring data and sediment records. Freshwater Biol., 57, 1998–2014.
https://doi.org/10.1111/j.1365-2427.2012.02832.x

Hynynen, J., Palomäki, A., Veijola, H., Meriläinen, J. J., Bagge, P., Manninen, P., et al. 1999. Planktonic and zoobenthic communities in an oligotrophic, boreal lake inhabited by an endemic and endangered seal population. Boreal Environ. Res., 4, 145–161.

IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Izmest'eva, L. R., Moore, M. V., Hampton, S. E., Ferwerda, C. J., Gray, D. K., Woo, K. H., et al. 2016. Lake-wide physical and biological trends associated with warming in Lake Baikal. J. Great Lakes Res., 42, 6–17.
https://doi.org/10.1016/j.jglr.2015.11.006

Jaagus, J. 2006. Climatic changes in Estonia during the second half of the 20th century in relationship with changes in large-scale atmospheric circulation. Theor. Appl. Climatol., 83, 77–88.
https://doi.org/10.1007/s00704-005-0161-0

Järvet, A. 2004. Hydrology of Lake Võrtsjärv. In Lake Võrtsjärv (Haberman, J., Pihu, E., and Raukas, A., eds), pp. 105–139. Estonian Encyclopaedia Publishers, Tallinn.

Jeppesen, E., Jensen, J. P., and Søndergaard, M. 2002. Response of phytoplankton, zooplankton, and fish to re-oligotrophication: an 11 year study of 23 Danish lakes. Aquat. Ecosyst. Health Manage., 5, 31–43.
https://doi.org/10.1080/14634980260199945

Jeppesen, E., Meerhoff, M., Davidson, T. A., Trolle, D., Søndergaard, M., Lauridsen, T. L., et al. 2014. Climate change impacts on lakes: an integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. J. Limnol., 73, 88–111.
https://doi.org/10.4081/jlimnol.2014.844

Kernan, M., Battarbee, R. W., and Moss, B. (eds). 2010. Climate Change Impacts on Freshwater Ecosystems. Wiley-Blackwell.

Kļaviņš, M., Rodinovs, V., and Draveniece, A. 2007. Large-scale atmospheric circulation processes as the driving force in the climatic turning points and regime shifts in the Baltic Region. In Climate Change in Latvia (Kļaviņš, M., ed.), pp. 45–57. Latvijas Universitāte, Riga.

Kriauciuniene, J., Meilutyte-Barauskiene, D., Reihan, A., Koltsova, T., Lizuma, L., and Sarauskiene, D. 2012. Variability in temperature, precipitation and river discharge in the Baltic States. Boreal Environ. Res., 17, 150–162.

Laugaste, R., Haberman, J., and Blank, K. 2010. Cool winters versus mild winters: effects on spring plankton in Lake Peipsi. Estonian J. Ecol., 59, 163–183.
https://doi.org/10.3176/eco.2010.3.01

Leeben, A., Freiberg, R., Tõnno, I., Kõiv, T., Alliksaar, T., and Heinsalu, A. 2013. A comparison of the palaeolimnology of Peipsi and Võrtsjärv: connected shallow lakes in north-eastern Europe for the twentieth century, especially in relation to eutrophication progression and water-level fluctuations. Hydrobiologia, 710, 227–240.
https://doi.org/10.1007/s10750-012-1209-7

Livingstone, D. M. 1997. Break-up dates of alpine lakes as proxy data for local and regional mean surface air temperatures. Climatic Change, 37, 407–439.
https://doi.org/10.1023/A:1005371925924

Livingstone, D. M. and Dokulil, M. T. 2001. Eighty years of spatially coherent Austrian lake surface temperatures and their relationship to regional air temperature and the North Atlantic Oscillation. Limnol. Oceanogr., 46, 1220–1227.
https://doi.org/10.4319/lo.2001.46.5.1220

Lizuma, L., Klaviņš, M., Briede, A., and Rodinovs, V. 2007. Long-term changes of air temperature in Latvia. In Climate Change in Latvia (Kļaviņš, M., ed.), pp. 11–20. Latvijas Universitāte, Riga.

Lougheed, V. L. and Chow-Fraser, P. 1998. Factors that regulate the zooplankton community structure of a turbid, hypereutrophic Great Lakes wetland. Can. J. Fish. Aquat. Sci., 55, 150–161.
https://doi.org/10.1139/f97-227

Magnuson, J. J. 1990. Long-term ecological research and the invisible present. Bioscience, 40, 495–501.
https://doi.org/10.2307/1311317

Magnuson, J. J., Robertson, D. M., Benson, B. J., Wynne, R. H., Livingstone, D. M., Arai, T., et al. 2000. Historical trends in lake and river ice cover in the Northern Hemisphere. Science, 289, 1743–1746.
https://doi.org/10.1126/science.289.5485.1743

Mohr, S. and Adrian, R. 2002. Reproductive success of the rotifer Brachionus calyciflorus feeding on ciliates and flagellates. Freshwater Biol., 47, 1832–1839.
https://doi.org/10.1046/j.1365-2427.2002.00929.x

Molina-Navarro, E., Martínez Pérez, S., Sastre Merlín, A., and Martín del Pozo, D. 2012. The limnological charac­teristics and zooplankton community of a newly created site: the Pareja Limno-reservoir. Limnetica, 31, 95–106.

Mooij, W. M., Hülsmann, S., De Senerpont Domis, L. N., Nolet, B. A., Bodelier, P. L. E., Boers, P. C M., et al. 2005. The impact of climate change on lakes in the Netherlands: a review. Aquat. Ecol., 39, 381–400.
https://doi.org/10.1007/s10452-005-9008-0

Mooij, W. M., Janse, J. H., De Senerpont Domis, L. N., Hülsmann, S., and Ibelings, B. W. 2007. Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. Hydrobiologia, 584, 443–454.
https://doi.org/10.1007/s10750-007-0600-2

Moss, B., Kosten, S., Meerhoff, M., Battarbee, R. W., Jeppesen, E., Mazzeo, N., et al. 2011. Allied attack: climate change and eutrophication. Inland Waters, 1, 101–105.
https://doi.org/10.5268/IW-1.2.359

Mühlen, M. and Schneider, G. 1920. Der See Wirzjerw in Livland. Biologie und Fischerei. Archiv für die Naturkunde des Ostbaltikums, 14, 1–156.

Nicolle, A., Hansson, L.-A., Brodersen, J., Nilsson, P. A., and Brönmark, C. 2011. Interactions between predation and resources shape zooplankton population dynamics. PloS ONE, 6, e16534.
https://doi.org/10.1371/journal.pone.0016534

Nicolle, A., Hallgren, P., von Einem, J., Kritzberg, E. S., Granéli, W., Persson, A., et al. 2012. Predicted warming and browning affect timing and magnitude of plankton phenological events in lakes: a mesocosm study. Freshwater Biol., 57, 684–695.
https://doi.org/10.1111/j.1365-2427.2012.02733.x

Nõges, T. 2009. Trends in air temperature in Estonia and in water temperature of Estonian large lakes in 1961–2004, possible consequences on water quality. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 30, 997–999.

Nõges, P. and Nõges, T. 2014. Weak trends in ice phenology of Estonian large lakes despite significant warming trends. Hydrobiologia, 731, 5–18.
https://doi.org/10.1007/s10750-013-1572-z

Nõges, T., Agasild, H., Haberman, J., Kangur, A., Kangur, K., Kangur, P., et al. 2004. Food webs in Lake Võrtsjärv. In Lake Võrtsjärv (Haberman, J., Pihu, E., and Raukas, A., eds), pp. 335–344. Estonian Encyclopaedia Publishers, Tallinn.

Nõges, T., Järvet, A., Kisand, A., Laugaste, R., Loigu, E., Skakalski, B., and Nõges, P. 2007. Reaction of large and shallow lakes Peipsi and Võrtsjärv to the changes of nutrient loading. Hydrobiologia, 584, 253–264.
https://doi.org/10.1007/s10750-007-0603-z

Nõges, T., Tuvikene, L., and Nõges, P. 2010. Contemporary trends of temperature, nutrient loading, and water quality in large lakes Peipsi and Võrtsjärv, Estonia. Aquat. Ecosyst. Health Manage., 13, 143–153.
https://doi.org/10.1080/14634981003788987

Nõges, P., Nõges, T., Ghiani, M., Paracchini, B., Grande, J. P., and Sena, F. 2011. Morphometry and trophic state modify the thermal response of lakes to meteorological forcing. Hydrobiologia, 667, 241–254.
https://doi.org/10.1007/s10750-011-0691-7

Nõges, T., Järvalt, A., Haberman, J., Zingel, P., and Nõges, P. 2016. Is fish able to regulate filamentous blue-green dominated phytoplankton? Hydrobiologia, 780, 59–69.
https://doi.org/10.1007/s10750-016-2849-9

Paerl, H. W. and Huisman, J. 2008. Climate: blooms like it hot. Science, 320, 57–58.
https://doi.org/10.1126/science.1155398

Pernaravičiūtė, B. 2004. The impact of climate change on thermal regime of Lithuanian lakes. Ekológia, 2, 58–63.

R Development Core Team. 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Ricci, C. 2001. Dormancy patterns in rotifers. Hydrobiologia, 446-447, 1–11.
https://doi.org/10.1023/A:1017548418201

Rodionov, S. N. 2004. A sequential algorithm for testing climate regime shifts. Geophys. Res. Lett., 31(9), L09204.
https://doi.org/10.1029/2004GL019448

Sand-Jensen, K., Pedersen, N. L., and Søndergaard, M. 2007. Bacterial metabolism in small temperate streams under contemporary and future climates. Freshwater Biol., 52, 2340–2353.
https://doi.org/10.1111/j.1365-2427.2007.01852.x

Sarvala, J. 1979. Benthic resting periods of pelagic cyclopoids in an oligotrophic lake. Ecography, 2, 88–100.
https://doi.org/10.1111/j.1600-0587.1979.tb00686.x

Schalau, K., Rinke, K., Straile, D., and Peeters, F. 2008. Temperature is the key factor explaining interannual variability of Daphnia development in spring: a modelling study. Oecologia, 157, 531–543.
https://doi.org/10.1007/s00442-008-1081-3

Shurin, J. B., Winder, M., Adrian, R., Keller, W. B., Matthews, B., Paterson, A. M., et al. 2010. Environ­mental stability and lake zooplankton diversity – contrasting effects of chemical and thermal variability. Ecol. Lett., 13, 453–463. https://doi.org/10.1111/j.1461-0248.2009.01438.x

Sommer, U. and Lengfellner, K. 2008. Climate change and the timing, magnitude, and composition of the phyto­plankton spring bloom. Glob. Change Biol., 14, 1199–1208.
https://doi.org/10.1111/j.1365-2486.2008.01571.x

Spriņģe, G., Kļaviņš, M., Birzaks, J., Briede, A., Druvietis, I., Eglīte, L., et al. 2007. Climate change and its impacts in inland surface waters. In Climate Change in Latvia (Klaviņš, M., ed.), pp. 123–143. Latvias Universitāte, Riga.

Straile, D. 2015. Zooplankton biomass dynamics in oligotrophic versus eutrophic conditions: a test of the PEG model. Freshwater Biol., 60, 174–183.
https://doi.org/10.1111/fwb.12484

Straile, D. and Adrian, R. 2000. The North Atlantic Oscillation and plankton dynamics in two European lakes – two variations on a general theme. Glob. Change Biol., 6, 663–670.
https://doi.org/10.1046/j.1365-2486.2000.00350.x

Talling, J. F. 2003. Phytoplankton–zooplankton seasonal timing and the ʻclear-water phaseʼ in some English lakes. Freshwater Biol., 48, 39–52.
https://doi.org/10.1046/j.1365-2427.2003.00968.x

Taylor, A. H., Allen, J. I., and Clark, P. A. 2002. Extraction of a weak climatic signal by an ecosystem. Nature, 416, 629–632.
https://doi.org/10.1038/416629a

Telesh, I. V. 1993. The effect of fish on planktonic rotifers. Hydrobiologia, 255256, 289–296.
https://doi.org/10.1007/BF00025851

Thompson, R. and Clark, R. M. 2008. Is spring starting earlier? Holocene, 18, 95–104.
https://doi.org/10.1177/0959683607085599

Tuvikene, L., Nõges, T., and Nõges, P. 2011. Why do phytoplankton species composition and “traditional” water quality parameters indicate different ecological status of a large shallow lake? Hydrobiologia, 660, 3–15.
https://doi.org/10.1007/s10750-010-0414-5

Vandekerkhove, J., Declerck, S., Brendonck, L., Conde-Porcuna, J. M., Jeppesen, E., and De Meester, L. 2005. Hatching of cladoceran resting eggs: temperature and photoperiod. Freshwater Biol., 50, 96–104.
https://doi.org/10.1111/j.1365-2427.2004.01312.x

Wagner, C. and Adrian, R. 2011. Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: a matter of temporal scale. Freshwater Biol., 56, 1949–1961.
https://doi.org/10.1111/j.1365-2427.2011.02623.x

Wagner, A. and Benndorf, J. 2007. Climate-driven warming during spring destabilises a Daphnia population: a mechanistic food web approach. Oecologia, 151, 351–364.
https://doi.org/10.1007/s00442-006-0554-5

Weyhenmeyer, G. A., Blenckner, T., and Pettersson, K. 1999. Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnol. Oceanogr., 44, 1788–1792.
https://doi.org/10.4319/lo.1999.44.7.1788

Weyhenmeyer, G. A., Westöö, A.-K., and Willén, E. 2008. Increasingly ice-free winters and their effects on water quality in Sweden’s largest lakes. Hydrobiologia, 599, 111–118.
https://doi.org/10.1007/s10750-007-9188-9

Williamson, C. E., Saros, J. E., and Schindler, D. W. 2009. Climate change: sentinels of change. Science, 323, 887–888.
https://doi.org/10.1126/science.1169443

Wrona, F. J., Prowse, T. D., Reist, J. D., Hobbie, J. E., Lévesque, L. M. J., and Vincent, W. F. 2006. Climate change effects on aquatic biota, ecosystem structure and function. Ambio, 35, 359–369.
https://doi.org/10.1579/0044-7447(2006)35[359:CCEOAB]2.0.CO;2

Yates, A. G., Brua, R. B., Culp, J. M., and Chambers, P. A. 2013. Multi-scaled drivers of rural prairie stream metabolism along human activity gradients. Freshwater Biol., 58, 675–689.
https://doi.org/10.1111/fwb.12072

Zingel, P., Agasild, H., Nõges, T., and Kisand, V. 2007. Ciliates are the dominant grazers on pico- and nanoplankton in a shallow, naturally highly eutrophic lake. Microb. Ecol., 53, 134–142.
https://doi.org/10.1007/s00248-006-9155-4

Back to Issue