headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
» 2017
Vol. 34, Issue 4
Vol. 34, Issue 3
Vol. 34, Issue 2
Vol. 34, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

X-RAY PHOTOELECTRON SPECTROSCOPY INVESTIGATION OF NITROGEN TRANSFORMATION IN CHINESE OIL SHALES DURING PYROLYSIS; pp. 129–145

(Full article in PDF format) https//doi.org/10.3176/oil.2017.2.03


Authors

QING WANG, QI LIU, ZHICHAO WANG, HONGPENG LIU, JINGRU BAI

Abstract

X-ray photoelectron spectroscopy (XPS) was used to investigate changes in nitrogen functionalities present in Chinese Huadian (HD), Maoming (MM) and Yaojie (YJ) oil shales during pyrolysis. Throughout the process (T ≤ 600 °C), most of the nitrogen contained in raw oil shale samples was retained in their semi-cokes. Five peaks of nitrogen functionalities (N 1s) appeared in the XPS spectra of raw HD, MM and YJ oil shale samples and their semi-cokes: N-6 (pyridine), N-A (amino), N-5 (pyridone), N-Q (quaternary nitrogen) and N-X1 (pyridine N-oxide). To obtain an acceptable fit, an additional peak at 404 (±0.5) eV (N-X2) was required in the N 1s spectra of the samples. N-5 could either represent pyridone or a mixture of pyridone and pyrrolic nitrogen forms, the most abundant ones in all samples. At a relatively low temperature (300 °C) the desorption reaction occurred and the amount of chemisorbed oxygen associated nitrogen (N-X2) decreased significantly. As the pyrolysis temperature increased from 300 to 500 °C, pyridine N-oxide was converted to pyridone, and, simultaneously, the latter was converted to pyridine and pyridine structures associated with oxygen – quaternary nitrogen. In the semi-cokes of Huadian and Maoming oil shale samples at 600 °C, most of the pyridone was converted into pyridine and quaternary nitrogen. At this temperature, especially the condensation reac­tion of pyridine into quaternary nitrogen occurred in the semi-coke of Yaojie oil shale sample, while quaternary nitrogen represented the nitrogen atoms in the interior of precursors of the graphene layers.

Keywords

oil shale pyrolysis, semi-coke, nitrogen transformation, X-ray photoelectron spectroscopy.

References

 1.         Qian , J. L. , Wang , J. Q. , Li , S. Y. World’s oil shale available retorting techno­logies and the forecast of shale oil production. In: Proceedings of the 18th International Offshore and Polar Engineering Conference , Vancouver , British Columbia , Canada , July 6–11 , 2008 , I , 19–20.

2.         Bunger , J. W. , Crawford , P. M. , Johnson , H. R. Hussert revisited – 5: Is oil shale America's answer to peak-oil challenge. Oil Gas. J. , 2004 , 102(30) , 16–24.

 3.         Barkia , H. , Belkbir , L. , Jayaweera , S. A. A. Thermal analysis studies of oil shale residual carbon. J. Therm. Anal. Calorim. , 2004 , 76(2) , 615–622.
https://doi.org/10.1023/B:JTAN.0000028040.16844.40

4.         Sklarew , D. S. , Hayes , D. J. Trace nitrogen-containing species in the offgas from two oil shale retorting processes. Environ. Sci. Technol. , 1984 , 18(8) , 600–603.
https://doi.org/10.1021/es00126a006

5.         Mushrush , G. W. , Beal , E. J. , Hardy , D. R. , Hughes , J. M. Nitrogen compound distribution in middle distillate fuels derived from petroleum , oil shale , and tar sand sources. Fuel Process. Technol. , 1999 , 61(3) , 197–210.
https://doi.org/10.1016/S0378-3820(99)00056-9

6.         Jiang , X. M. , Yang , L. J. , Yan , C. , Hang , X. X. , Yang , H. L. Experimental investi­gation of SO2 and NOx emissions from Huadian oil shale during circulat­ing fluidized-bed combustion. Oil Shale , 2004 , 21(3) , 249–257.

7.         Akash , B. A. , Jaber , J. O. Characterization of shale oil as compared to crude oil and some refined petroleum products. Energ. Source. , 2003 , 25(12) , 1171–1182.
https://doi.org/10.1080/00908310390233612

8.         Bai , J. R. , Xu , W. , Pan , S. , Zhang , B. X. Oil shale retorting process charac­teristic orthogonal carbon analysis. J. Northeast Dianli Univ. , 2015 , 35(5) , 46–50 (in Chinese).

9.         Pels , J. R. , Wójtowicz , M. A. , Moulijn , J. A. Rank dependence of N2O emission in fluidized-bed combustion of coal. Fuel , 1993 , 72(3) , 373–379.
https://doi.org/10.1016/0016-2361(93)90056-8

10.      Kelemen , S. R. , Gorbaty , M. L. , Kwiatek , P. J. Quantification of nitrogen forms in Argonne premium coals. Energ. Fuel. , 1994 , 8(4) , 896–906.
https://doi.org/10.1021/ef00046a013

11.      Kelemen , S. R. , Afeworki , M. , Gorbaty , M. L. , Kwiatek , P. J. , Solum , M. S. , Hu , J. Z. , Pugmire , R. J. XPS and 15N NMR study of nitrogen forms in carbonaceous solids. Energ. Fuel. , 2002 , 16(6) , 1507–1515.
https://doi.org/10.1021/ef0200828

12.      Kelemen , S. R. , Freund , H. , Gorbaty , M. L. , Kwiatek , P. J. Thermal chemistry of nitrogen in kerogen and low-rank coal. Energ. Fuel. , 1999 , 13(2) , 529–538.
https://doi.org/10.1021/ef9802126

13.      Liu , Y. H. , Che , D. F. , Li , Y. T. , Hui , S. E. , Xu , T. M. X-ray photoelectron spectroscopy determination of the forms of nitrogen in Tongchuan coal and its chars. J. Xi’an Jiaotong Univ. , 2001 , 35(7) , 661–665 (in Chinese).

14.      Mullins , O. C. , Mitra-Kirtley , S. , Van Elp , J. , Cramer , S. P. Molecular structure of nitrogen in coal from XANES spectroscopy. Appl. Spectrosc. , 1993 , 47(8) , 1268–1275.
https://doi.org/10.1366/0003702934067991

15.      Mitra-Kirtley , S. , Mullins , O. C. , van Elp , J. , George , S. J. , Chen , J. , Cramer , S. P. Determination of the nitrogen chemical structures in petroleum asphaltenes using XANES spectroscopy. J. Am. Chem. Soc. , 1993 , 115(1) , 252–258.
https://doi.org/10.1021/ja00054a036

16.      Mitra-Kirtley , S. , Mullins , O. C. , van Elp , J. , Cramer , S. P. Nitrogen chemical structure in petroleum asphaltene and coal by X-ray absorption spectroscopy. Fuel , 1993 , 72(1) , 133–135.
https://doi.org/10.1016/0016-2361(93)90388-I

17.      Kelemen , S. R. , Gorbaty , M. L. , Kwiatek , P. J. , Fletcher , T. H. , Watt , M. , Solum , M. S. , Pugmire , R. J. Nitrogen transformations in coal during pyro­lysis. Energ. Fuel. , 1998 , 12(1) , 159–173.
https://doi.org/10.1021/ef9701246

18.      Stańczyk , K. , Dziembaj , R. , Piwowarska , Z. , Witkowski , S. Transformation of nitrogen structures in carbonization of model compounds determined by XPS. Carbon , 1995 , 33(10) , 1383–1392.
https://doi.org/10.1016/0008-6223(95)00084-Q

19.      Pels , J. R. , Kapteijn , F. , Moulijn , J. A. , Zhu , Q. , Thomas , K. M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon , 1995 , 33(11) , 1641–1653.
https://doi.org/10.1016/0008-6223(95)00154-6

20.      Wang , Q. , Xu , X. C. , Chi , M. S. , Zhang , H. X. , Cui , D. , Bai , J. R. FT-IR study on composition of oil shale kerogen and its pyrolysis oil generation cha­rac­teristics. J. Fuel Chem. Technol. , 2015 , 43(10) , 1158–1166 (in Chinese).

21.      Heistand , R. N. The Fischer Assay: Standard for the oil shale industry. Energ. Source. , 1976 , 2(4) , 397–405.
https://doi.org/10.1080/00908317608945962

22.      Kelemen , S. R. , Afeworki , M. , Gorbaty , M. L. , Sansone , M. , Kwiatek , P. J. , Walters , C. C. , Freund , H. , Siskin , M. , Bence , A. E. , Curry , D. J. , Solum , M. , Pugmire , R. J. , Vandenbroucke , M. , Leblond , M. , Behar , F. Direct charac­teriza­tion of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods. Energ. Fuel. , 2007 , 21(3) , 1548–1561.
https://doi.org/10.1021/ef060321h

23.      Pietrzak , R. , Wachowska , H. The influence of oxidation with HNO3 on the surface composition of high-sulphur coals: XPS study. Fuel Process. Technol. , 2006 , 87(11) , 1021–1029.
https://doi.org/10.1016/j.fuproc.2006.08.001

24.      Buckley , A. N. Nitrogen functionality in coals and coal-tar pitch determined by X-ray photoelectron spectroscopy. Fuel Process. Technol. , 1994 , 38(3) , 165–179.
https://doi.org/10.1016/0378-3820(94)90046-9

25.      Liao , H. Q. , Li , B. Q. , Zhang , B. J. Desulfurization and denitrogenation in copyrolysis of coal with hydrogen-rich gases. J. Fuel Chem. Technol. , 1999 , 27(3) , 268–272 (in Chinese).

26.      Wang , Q. , Sun , B. Z. , Hu , A. J. , Bai , J. R. , Li , S. H. Pyrolysis characteristics of Huadian oil shales. Oil Shale , 2007 , 24(2) , 147–157.

27.      Williams , P. T. , Ahmad , N. Influence of process conditions on the pyrolysis of Pakistani oil shales. Fuel , 1999 , 78(6) , 653–662.
https://doi.org/10.1016/S0016-2361(98)00190-2

28.      Jaber , J. O. , Probert , S. D. Non-isothermal thermogravimetry and decomposi­tion kinetics of two Jordanian oil shales under different processing conditions. Fuel Process. Technol. , 2000 , 63(1) , 57–70.
https://doi.org/10.1016/S0378-3820(99)00064-8

29.      Qin , K. Z. , Guo , S. H. The structure research of Fu Shun and Mao Ming oil shale. 4. The content and composition of minerals. J. Fuel Chem. Technol. , 1987 , 15(1) , 1–8 (in Chinese).

30.      Baughman , G. L. Synthetic Fuels Data Handbook , 2nd edition. Cameron Engineers Inc , Denver , USA , 1978.

31.      Gong , B. , Buckley , A. N. , Lamb , R. N. , Nelson , P. F. XPS determination of the forms of nitrogen in coal pyrolysis chars. Surf. Interface Anal. , 1999 , 28(1) , 126–130.
https://doi.org/10.1002/(SICI)1096-9918(199908)28:1<126::AID-SIA633>3.0.CO;2-V

Jones , R. B. , McCourt , C. B. , Swift , P. XPS studies of nitrogen and sulphur in coal. In: Proceedings of the International Conference on Coal Science , Düsseldorf , September 7–9 , 1981. Verlag Glückauf , Essen , 1981 , 657–662

 
Back

Current Issue: Vol. 36, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December