headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
» 2017
Vol. 34, Issue 4
Vol. 34, Issue 3
Vol. 34, Issue 2
Vol. 34, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

THE EFFECT OF INLET VELOCITY ON THE PERFORMANCE OF OIL SHALE ASH CYCLONE SEPARATOR; pp. 155–166

(Full article in PDF format) https//doi.org/10.3176/oil.2017.2.05


Authors

JING-XUAN YANG, GUO-GANG SUN, YU-MING ZHANG, QIANG MA, CHUAN LI

Abstract

The maximum efficiency inlet velocity (MEIV) of the oil shale ash cyclone separator was explored in this paper. The results show that the inlet area of the separator has a significant effect on MEIV. Further analysis revealed that the cross-sectional mean axial velocity for the gas in the cylinder affording the highest efficiency was hardly affected by inlet dimensions, which circumstance could be made use of in designing the cyclone diameter. Based on the results obtained, an equation was constructed and the maximum efficiency inlet velocity for oil shale ash was predicted. Moreover, the effect of particle geometry on MEIV was ascertained.

Keywords

cyclone separator, oil shale ash, separation efficiency, inlet velocity.

References

 1.         Ots , A. Formation of air-polluting compounds while burning oil shale. Oil Shale , 1992 , 9(1) , 63–75.

2.         Yue , C. , Li , S. Combustion of oil shale particles under elevated pressures. Oil Shale , 2002 , 19(4) , 411–417.

3.         Machado , N. R. C. F. , Miotto , D. M. M. Synthesis of Na-A and -X zeolites from oil shale ash. Fuel , 2005 , 84(18) , 2289–2294.
https://doi.org/10.1016/j.fuel.2005.05.003

4.         Häsänen , H. , Aunela-Tapola , L. , Kinnunen , V. , Larjava , K. , Mehtonen , A. , Salmi­kangas , T. , Leskelä , J. , Loosaar , J. Emission factors and annual emissions of bulk and trace elements from oil shale fueled power plants. Sci. Total Environ. , 1997 , 198(1) , 1–12.
https://doi.org/10.1016/S0048-9697(97)05432-6

5.         Whitcombe , J. A. , Vawter , R. G. The TOSCO-II oil shale process. In: Science and Technology of Oil Shale (Yen , T. E. , ed.) , Ann Arbor Science Publishers , Ann Arbor , Michigan , 1976 , 47–64.

6.         Han , X. , Jiang , X. , Wang , H. , Cui , Z. Study on design of Huadian oil shale-fired circulating fluidized bed boiler. Fuel Process. Technol. , 2006 , 87(4) , 289–295.
https://doi.org/10.1016/j.fuproc.2005.04.006

7.         Ots , A. , Pihu , T. , Arro , H. Influence of sulphur dioxide and hydrogen chloride on properties of oil shale ash. Oil Shale , 2005 , 22(4S) , 435–444.

8.         Wang , W. D. , Zhou , C. Y. Retorting of pulverized oil shale in fluidized-bed pilot plant. Oil Shale , 2009 , 26(2) , 108–113.
https://doi.org/10.3176/oil.2009.2.03

9.         Wang , B. C. , Liu , Y. W. , Liu , J. , Sun , G. G. Experimental study on separation performance of a cyclone separator for oil shale processes. Petroleum Pro­cessing and Petrochemicals , 2011 , 42(10) , 59–62 (in Chinese).

10.      Wang , W. D. , Wang , Y. , Ma , Q. , Sun , G. G. Contrast experiments on cyclone separator performances of shale ash and FCC fine catalysts. China Powder Science and Technology , 2012 , 18(4) , 70–72 (in Chinese).

11.      Kalen , B. , Zenz , F. A. Theoretical-empirical approach to saltation velocity in cyclone design. AIChE Symp. Ser. , 1974 , 70(137) , 388–396.

12.      Shi , M. X. , Wu , X. L. An experimental research on the pilot-scale cold model of cyclone separator. Chemical Engineering & Machinery , 1993 , 20(4) , 187–192 (in Chinese).

13.      Shepherd , C. B. , Lapple , C. E. Air Pollution Control: A Design Approach in Cyclones. Woveland Press , Inc. , Illinois , 1939.

14.      Hoffmann , A. C. , Stein , L. E. Gas Cyclones and Swirl Tubes: Principles , Design and Operation. Springer , Berlin , Heidelberg , New York , 2007.

15.      Avci , A. , Karagoz , I. Effects of flow and geometrical parameters on the collection efficiency in cyclone separators. J Aerosol Sci. , 2003 , 34(7) , 937–955.
https://doi.org/10.1016/S0021-8502(03)00054-5

16.      Yang , J. , Sun , G. , Zhan , M. Prediction of maximum-efficiency inlet velocity in cyclones. Powder Technol. , 2015 , 286 , 124–131.
https://doi.org/10.1016/j.powtec.2015.07.024

17.      Zhao , B. Prediction of gas-particle separation efficiency for cyclones: A time-of-flight model. Sep. Purif. Technol. , 2012 , 85 , 171–177.
https://doi.org/10.1016/j.seppur.2011.10.006

18.      Chhabra , R. P. , Agarwal , L. , Sinha , N. K. Drag on non-spherical particles: an evaluation of available methods. Powder Technol. , 1999 , 101 , 288–295.
https://doi.org/10.1016/S0032-5910(98)00178-8

Morsi , S. A. , Alexander , A. J. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. , 1972 , 55 , 193–208.
https://doi.org/10.1017/S0022112072001806

 
Back

Current Issue: Vol. 36, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December