headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
» 2017
Vol. 34, Issue 4
Vol. 34, Issue 3
Vol. 34, Issue 2
Vol. 34, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

VARIABLE ACTIVATION ENERGY PRINCIPLE TO MODEL OIL SHALE PYROLYSIS KINETICS; pp. 181–194

(Full article in PDF format) https//doi.org/10.3176/oil.2017.2.07


Authors

OMAR SALIM AL-AYED, MOHAMMAD WALEED AMER, MOHAMMED MATOUQ

Abstract

The oil shale (OS) sample from Sultani mine, southern Jordan, was subjected to thermogravimetric/differential thermogravimetric (TG/DTG) and differential scanning calorimetry (DSC) analysis. Analysis was used to determine the kinetic parameters in the 300–540 °C temperature range, employing different heating rates (3, 5, 10, 20, 30 °C/min). The first order con­version function was found to best represent the oil shale pyrolysis kinetics. The data in the studied pyrolysis temperature range was divided into three zones according to the behavior of the quantity ln(dx/dT/(1–x)) vs 1/T(K). In the first linear zone, the apparent activation energy and frequency factor were found to be in the range of 63.1–94.2 kJ/mol and 9.3E+3–5.03E+6, respectively. In the second zone of analysis, the apparent activation energy was found to be negative and varied between –25.8 and –2.13 kJ/mol and the corresponding frequency factor was in the range of 19.65–0.00098. In the third zone under study, the calculated apparent activa­tion energy and frequency factors were in the range of 186.9–342.1 kJ/mol and 1.87E+12–1.46E+23, respectively.

Keywords

oil shale pyrolysis, activation energy, kinetic parameters, differential thermogravimetric analysis.

Back

Current Issue: Vol. 36, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December