headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
Vol. 66, Issue 4
Vol. 66, Issue 3
Vol. 66, Issue 2
Vol. 66, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Stability and stabilizability of linear time-delay systems on homogeneous time scales; pp. 124–136

(Full article in PDF format) https://doi.org/10.3176/proc.2017.2.02


Authors

Juri Belikov, Zbigniew Bartosiewicz

Abstract

This paper provides necessary and sufficient conditions for the exponential stability of a linear retarded time-delay system defined on a homogeneous time scale. Conditions are formulated in terms of a characteristic equation associated with the system. This approach is then used to develop feedback stabilizability criteria.

Keywords

linear control system, time scales, time delay, stability.

References

1. Åström , K. J. and Wittenmark , B. Computer-controlled Systems: Theory and Design. Dover Publications , New York , 2011.

2. Bartosiewicz , Z. , Piotrowska , E. , andWyrwas , M. Stability , stabilization and observers of linear control systems on time scales. In Conference on Decision and Control , New Orleans , LA , November 2007 , 2803–2808.

3. Bohner , M. and Guseinov , G. Sh. The h-Laplace and q-Laplace transforms. J. Math. Anal. Appl. , 2010 , 365(1) , 75–92.
https://doi.org/10.1016/j.jmaa.2009.09.061

4. Bohner , M. and Peterson , A. Dynamic Equations on Time Scales: An Introduction with Applications. Birkh¨auser , Boston , 2001.
https://doi.org/10.1007/978-1-4612-0201-1

5. Bohner , M. and Peterson , A. Laplace transform and Z-transform: unification and extension. Methods Appl. Anal. , 2002 , 9(1) , 151–158.
https://doi.org/10.4310/maa.2002.v9.n1.a6

6. Cieśliński , J. L. New definitions of exponential , hyperbolic and trigonometric functions on time scales. J. Math. Anal. Appl. , 2012 , 388(1) , 8–22.
https://doi.org/10.1016/j.jmaa.2011.11.023

7. Davis , J. M. , Gravagne , I. A. , and Marks , R. J. II. Bilateral Laplace transforms on time scales: convergence , convolution , and the characterization of stationary stochastic time series. Circ. Syst. Signal PR. , 2010 , 29(6) , 1141–1165.
https://doi.org/10.1007/s00034-010-9196-2

8. Du , B. , Liu , Y. , Batarfi , H. A. , and Alsaadi , F. E. Almost periodic solution for a neutral-type neural networks with distributed leakage delays on time scales. Neurocomputing , 2016 , 173(3) , 921–929.
https://doi.org/10.1016/j.neucom.2015.08.047

9. Fiagbedzi , Y. A. and Pearson , A. E. Feedback stabilization of linear autonomous time lag systems. IEEE Trans. Autom. Control , 1986 , 31(9) , 847–855.
https://doi.org/10.1109/TAC.1986.1104417

10. Gu , K. , Kharitonov , V. L. , and Chen , J. Stability of Time-delay Systems. Birkhäuser , Boston , 2003.
https://doi.org/10.1007/978-1-4612-0039-0

11. Hale , J. K. Functional Differential Equations. Springer-Verlag , NY , 1971.
https://doi.org/10.1007/978-1-4615-9968-5

12. Hilger , S. Ein Masskettenkalk¨ul mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD thesis , Universität Würzburg , 1988.

13. Lakshmikantham , V. and Vatsala , A. S. Hybrid systems on time scales. J. Comput. Appl. Math. , 2002 , 141(1) , 227–235.
https://doi.org/10.1016/S0377-0427(01)00448-4

14. Ma , Y. and Sun , J. Stability criteria of delay impulsive systems on time scales. Nonlinear Anal. , 2007 , 67(4) , 1181–1189.
https://doi.org/10.1016/j.na.2006.07.006

15. Mozyrska , D. , Pawłuszewicz , E. , and Torres , D. F. M. The Riemann-Stieltjes integral on time scales. AJMAA , 2010 , 7(1) , 1–14.

16. Pandolfi , L. On feedback stabilization of functional differential equations. Boll. Un. Mat. Ital. , 1975 , 11(4) , 626–635.

17. Pötzsche , C. , Siegmund , S. , and Wirth , F. A spectral characterization of exponential stability for linear time-invariant systems on time scales. DCSD-A , 2003 , 9(5) , 1223–1241.

18. Sontag , E. D. Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer , New York , 1998.
https://doi.org/10.1007/978-1-4612-0577-7

19. Wang , P. and Liu , X. ϕ0-Stability of hybrid impulsive dynamic systems on time scales. J. Math. Anal. Appl. , 2007 , 334(2) , 1220–1231.
https://doi.org/10.1016/j.jmaa.2007.01.030

20. Zhang , C. and Sun , Y. Stability analysis of linear positive systems with time delays on time scales. Adv. Differ. Equ.-NY , 2012 , 2012(1) , 1–11.

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December