headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
» 2017
Vol. 34, Issue 4
Vol. 34, Issue 3
Vol. 34, Issue 2
Vol. 34, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

PRIMARY METHOD FOR REDUCTION OF SO2 EMISSION IN PULVERIZED OIL SHALE-FIRED BOILERS AT NARVA POWER PLANTS: TEST 1 – WATER INJECTION AFTER SUPERHEATER; pp. 70–81

(Full article in PDF format) https://doi.org/10.3176/oil.2017.1.05


Authors

ROBERT KAROLIN, EDUARD LATÕŠOV, JÜRI KLEESMAA

Abstract

A primary method if used in pulverized oil shale-fired boilers in operation enables one to achieve the target value of SO2 specific emission – 400 mg/Nm3. It is also possible to meet the SO2 specific emission limit value, 200 mg/Nm3, set by the European Union for the new-installed solid fuel boilers by further optimization of the technological parameters of pulverized oil shale firing on the basis of primary methods. The intermediate injection of water (one of the primary method measures) during the test (the offered solution is somewhat similar to the LIFAC method) after the superheater decreases the SO2 emission from 2146 to 1760 mg/Nm3, i.e. by 17%. At the same time, the production of steam in the boiler decreases from 285 to 260 t/h, i.e. by 25 t/h. The performed tests proved to be technically ineffective and failed to give expected results.

Keywords

primary method, oil shale pulverized combustion, SO2 reduction, sorbent activation, injection of technical water, flue gas humidification.

References

1.     Raukas , A. , Siirde , A. New trends in Estonian oil shale industry. Oil Shale , 2012 , 29(3) , 203−205.
https://doi.org/10.3176/oil.2012.3.01

2.     Siirde , A. Oil shale related fundamental research and industry development. Oil Shale , 2015 , 32(1) , 1−4.
https://doi.org/10.3176/oil.2015.1.01

3.     Aunela , L. , Häsänen , E. , Kinnunen , V. , Larjava , K. , Mehtonen , A. , Salmi­kangas , T. , Leskelä , J. , Loosaar , J. Emissions from Estonian oil shale power plants. Oil Shale , 1995 , l2(2) ,165–177.

4.     Plamus , K. , Soosaar , S. , Ots , A. , Neshumayev , D. Firing Estonian oil shale of higher quality in CFB boilers - environmental and economic impact. Oil Shale , 2011 , 28(1S) , 113–126.
https://doi.org/10.3176/oil.2011.1S.04

5.     Konist , A. , Pihu , T. , Neshumayev , D. , Külaots , I. Low grade fuel - oil shale and biomass co-combustion in CFB boiler. Oil Shale , 2013 , 30(2S) , 294–304.
https://doi.org/10.3176/oil.2013.2S.09

6.     Plamus , K. , Ots , A. , Pihu , T. , Neshumayev , D. Firing Estonian oil shale in CFB boilers – ash balance and behaviour of carbonate minerals. Oil Shale , 2011 , 28(1) , 58–67.
https://doi.org/10.3176/oil.2011.1.07

7.     Ots , A. Oil Shale Fuel Combustion. Tallinna Raamatutrükikoda , Tallinn , 2006.

8.     Kleesmaa , J. , Latõšov , E. , Karolin , R. Primary method for reduction of SO2 emission and its impact on CO2 in pulverized oil shale-fired boilers at Narva Power Plant. Oil Shale , 2011 , 28(2) , 321–336.
https://doi.org/10.3176/oil.2011.2.06

9.     Kaljuvee , T. , Trass , O. , Pihu , T. , Konist , A. , Kuusik , R. Activation and reactivity of Estonian oil shale cyclone ash towards SO2 binding. J. Therm. Anal. Calorim. , 2015 , 121(1) , 19–28.
https://doi.org/10.1007/s10973-014-4308-z

10. Kaljuvee , T. , Trikkel , A. , Kuusik , R. Reactivity of oil shale ashes towards sulphur dioxide. 1. Activation of high-temperature ashes. Oil Shale , l997 , 14(3) , 393–407.

11. Kuusik , R. , Kaljuvee , T. , Trikkel , A. , Arro , H. Reactivity of oil shale ashes towards sulphur dioxide. 2. Low-temperature ashes formed by using CFBC technology , Oil Shale , l999 , 16(1) , 51–63.

12. Kuusik , R. , Kaljuvee , T. , Veskimäe , H. , Roundygin , Yu. , Keltman , A. Reactivity of oil shale ashes towards sulphur dioxide. 3. Recurrent use of ash for flue gas purification , Oil Shale , l999 , 16(4) , 303–313.

13. Trikkel , A. , Kuusik , R. Modelling of decomposition and sulphation of oil shale carbonates on the basis of natural limestone. Oil Shale , 2003 , 20(4) , 491–500.

14. Konist , A. , Pihu , T. , Neshumayev , D. , Siirde , A. Oil shale pulverized firing: boiler efficiency , ash balance and flue gas composition. Oil Shale , 2013 , 30(1) , 6–18.
https://doi.org/10.3176/oil.2013.1.02

15. Hämäla , S. LIFAC cuts SOx in Finland // Modern Power Systems. 1986 , vol. 6 , 87–91.

16. Ryyppö , M. , Ekman. I. Improving the performance of LIFAC FGD in Chinese boilers. Modern Power Systems , 2000 , 20(11) , 31–32.

17. Company Schlik homepage http://www.myschlick.com (accessed 09.09.2016).

18. Schröfelbauer , H. , Tauschitz , J. , Maier , H. Betriebserfahrungen mit Luftrein­haltemassnahmen dei braunkohlebefeuerten Dampfkraftwerken. VGB Kraft­werks­technik , 1988 , 68(3) , 273–281 (in German).

 
Back

Current Issue: Vol. 36, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December