headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
Vol. 66, Issue 4
Vol. 66, Issue 3
Vol. 66, Issue 2
Vol. 66, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Mackey Q-algebras; pp. 40–53

(Full article in PDF format) https://doi.org/10.3176/proc.2017.1.05


Authors

Mati Abel

Abstract

Main properties of the topology defined by a bornology on a topological linear space and main properties of Mackey Q-algebras are presented. Relationships of Mackey Q-algebras with other classes of topological algebras are described. It is shown that every Mackey Q-algebra is an advertibly Mackey complete algebra, every strongly sequential Mackey Q-algebra is a Q-algebra, every infrasequential Mackey Q-algebra is an advertibly complete algebra, and every infrasequential advertive Hausdorff algebra is a Mackey Q-algebra.

Keywords

topological algebra, Mackey Q-algebra, advertibly complete algebra, advertibly Mackey complete algebra, sequential algebra, strongly sequential algebra, netial algebra, infrasequential algebra.

References

1. Abel , M. Advertive topological algebras. In General Topological Algebras. Tartu , 1999 , 14–24; Math. Stud. (Tartu) , 1. Est. Math. Soc. , Tartu , 2001.

2. Abel , M. Topological algebras with pseudoconvexly bounded elements. In Topological Algebras , Their Applications , and Related Topics. Banach Center Publications , 67 , 21–33. Polish Academy of Sciences , Warsaw , 2005.
https://doi.org/10.4064/bc67-0-2

3. Abel , M. Topological algebras with idempotently pseudoconvex von Neumann bornology. Contemp. Math. , 2007 , 427 , 15–29. M. Abel: Mackey Q-algebras 53

4. Abel , M. Structure of locally idempotent algebras. Banach J. Math. Anal. , 2007 , 1(2) , 195–207.
https://doi.org/10.15352/bjma/1240336216

5. Abel , M. Topological algebras with all elements bounded. In Proceedings of the 8th International Conference of Topological Algebras and Their Applications , 2015. De Gruyter Proc. Math. (accepted).

6. Akkar , M. Sur le groupe des ´el´ements inversibles d’une alg`ebre bornologique convexe , Q-alg`ebres bornologiques convexes. C. R. Acad. Sc. Paris , Ser. I , 1985 , 300(2) , 35–38.

7. Akkar , M. Caract´erisation des alg`ebres localement m-convexes dont l’ensemble des caract`eres est ´equiborn´e. Colloq. Math. , 1995 , 68(1) , 59–65.

8. Arnold , B. H. Topologies defined by bounded sets. Duke Math. J. , 1951 , 18 , 631–642.
https://doi.org/10.1215/S0012-7094-51-01855-8

9. Bedda , A. and Cheikh , O. H. Boundedness of characters in locally A-convex algebras. Rend. Circ. Mat. Palermo Ser. II , 1998 , 47 , 91–98.
https://doi.org/10.1007/BF02844724

10. El Adlouni , H. and Oubbi , L. Groupe des inversibles et rayon spectral dans les alg`ebres topologiques. Rend. Circ. Mat. Palermo , 2000 , 49 , 527–539.
https://doi.org/10.1007/BF02904263

11. El Kinani , A. Advertible compl´etute et structure de Q-alg`ebre. Rend. Circ. Mat. Palermo , 2001 , 50 , 427–442.
https://doi.org/10.1007/BF02844423

12. Hogbe-Nlend , H. Th´eories des bornologies et applications. Lecture Notes Math. , 213. Springer-Verlag , Berlin , 1971.

13. Hogbe-Nlend , H. Les fondements de la th´eorie spectrale des alg`ebres bornologiques. Bol. Soc. Brasil. Mat. , 1972 , 3(1) , 19–56.

14. Hogbe-Nlend , H. Bornologies and Functional Analysis. Introductory Course on the Theory of Duality Topology-Bornology and Its Use in Functional Analysis. North-Holland Math. Studies , 62. North-Holland Publ. Co. , Amsterdam , 1977.

15. Husain , T. Multiplicative Functionals on Topological Algebras. Res. Notes in Math. , 85. Bitman , Boston , 1983.

16. Mallios , A. Topological Algebras. Selected Topics. North-Holland Math. Studies , 124. North-Holland Publ. Co. , Amsterdam , 1986.

17. Oudadess , M. A note on m-convex and pseudo-Banach structures. Rend. Circ. Mat. Palermo , 1992 , 41(1) , 105–110.
https://doi.org/10.1007/BF02844467

18. Rickart , C. E. General Theory of Banach Algebras. D. van Nostrand Co. , Inc. , Princeton , NJ , 1960.

19. Schaefer , H. H. Topological Vector Spaces. Second edition. Graduate Texts in Math. , 3. Springer-Verlag , New York , 1999.
https://doi.org/10.1007/978-1-4612-1468-7

20. Warner , S. Polynomial completeness in locally multiplicatively-complete algebras. Duke Math. J. , 1956 , 23 , 1–11.
https://doi.org/10.1215/S0012-7094-56-02301-8

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December