headerpos: 12198

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
Vol. 66, Issue 4
Vol. 66, Issue 3
Vol. 66, Issue 2
Vol. 66, Issue 1
» 2016
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
» Staff
» Other journals

Approaches to rainfall estimation and forecasting for urban wastewater disposal; pp. 29–33

(Full article in PDF format) https://doi.org/10.3176/proc.2017.1.07


Grigoriy T. Frumin, Maxim E. Ivanov, Lydia A. Kulikova, Anastasiia V. Eremina


The main disadvantages of the existing method of dealing with atmospheric precipitation in Saint Petersburg are examined. A new approach for automated measuring, monitoring, and forecasting atmospheric precipitation in a large industriaal city (a case study of Saint Petersburg) was developed. A flowchart for an automated information system for atmospheric precipitation monitoring and forecasting is presented. To forecast precipitation amounts, an adapted mesoscale meteorological model Weather Research and Forecasting (WRF) was used. Daily sums of precipitation at the pilot training area (5 November–15 December 2015) were used as the initial raw information. Actual and forecast daily sums of precipitation were compared. Using statistical analysis, it was determined that the differences between them were insignificant. The examined computer information system for monitoring and forecasting atmospheric precipitation allows accurate gauging and predicting their daily sums. It might be used in operational practice for supporting the operation of the local municipal service, responsible for the functioning of the city’s infrastructure.


rain gauge system, Saint Petersburg, automatic precipitation gauge, daily precipitation sums, forecasting model, regression technique.


     1.   Veltishchev , N. F. and Zhuponov , V. D. Experiments on radar reflectivity data assimilation in the WRF-ARW model. Meteorologiya i gidrologiya , 2012 , No. 3 , 5–19 (in Russian).

    2.   Karmazinov , F. V. Povyshenie ekspluatatsionnoj nadezhnosti , upravlyaemosti i effektivnosti sistemy vodootvedeniya krupnogo goroda [Increasing maintenance reliability , controllability and efficiency of a large city water disposal system]. Doctoral Dissertation. Saint Petersburg , 2000 (in Russian).

    3.   Meleshko , V. P. (ed.). Klimat Sankt Peterburga i ego izmeneniya [Climate of Saint Petersburg and its changes]. The Voeikov Main Geophysical Observatory Publ. , Saint Petersburg , 2010 (in Russian).

    4.   Makarova , N. V. and Trophimets , V. Ya. Statistika v Excel [Statistics in Excel]. Finansy i statistika Publ. , Мoscow , 2002 (in Russian).

    5.   Malinin , V. N. and Guryanov , D. A. Atmospheric circulation impact on winter temperature variability in Saint Petersburg. Izvestiya Rossiiskogo Pedagogicheskogo Universiteta A. I. Herzen , 2014 , No. 168 , 43–49 (in Russian).

    6.   Alekseev , M. I. and Kurganov , A. M. Organizatsiya otvedeniya poverkhnostnogo (dozhdevogo i talogo) stoka s urbanizirovannykh territorii [Organization of surface runoff (rainfall and snowmelt) diversion from urbanized territories]. АСВ SPbGASU Publ. , 2000 (in Russian).

    7.   RD 52.18.761–2012 Sredstva izmerenij gidro­meteorologicheskogo naznacheniya setevye. Obshchie tekhnicheskie trebovaniya [Hydrometeorological network measurement tools. General specifications] (in Russian). https://www.normacs.ru/Doclist/doc/11HUA.html (accessed 2016-12-15).

    8.   Guide to Meteorological Instruments and Methods of Observation. WMO-No. 8 , 2008.

    9.   Smirnov , N. V. and Dunin-Barkovsky , I. V. Kratkij kurs matematicheskoj statistiki dlya tekhnicheskikh prilozhenii [Short course of mathematical statistics for technical applications]. Fizmatgiz Publ. , Moscow , 1959 (in Russian).

 10.   Smirnova , M. M. , Rubinstein , K. G. , and Yushkov , V. P. Evaluation of atmospheric boundary layer’s characteristics presenting with the regional model. Meteorologiya i gidrologiya , 2011 , No. 12 , 5–16 (in Russian).

 11.   Frumin , G. T. and Davydenko , E. V. Interannual dynamics of atmospheric precipitation in Saint Petersburg. In Materialy 9 mezhdunarodnoj nauchno-prakticheskoj konferentsii Analiz , prognoz i upravlenie prirodnymi riskami v sovremennom mire (GEORISK – 2015) (Osipov , V. I. , ed.). Vol. 1. RUDN Publ. , Moscow , 2015 , 420–423 (in Russian).

 12.   Frumin , G. T. , Dikinis , A. V. , and Krashanovskaya , Y. V. Concentration of metals in soils of St. Petersburg. Ecologicheskaya khimiya , 2015 , 24(3) , 137–141 (in Russian).


Current Issue: Vol. 68, Issue 3, 2019

Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December