ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Potassium iodide catalysis in the alkylation of protected hydrazines; pp. 10–17
PDF | https://doi.org/10.3176/proc.2017.1.03

Authors
Anton Mastitski, Aleksander Abramov, Anneli Kruve, Jaak Järv
Abstract

Potassium iodide catalysis was applied for the synthesis of protected benzylhydrazines and hydrazinoacetic acid esters by the alkylation of protected hydrazines. Benzylic halogenides and halogenoacetic acid esters were employed as alkylating agents. In these syntheses the reactive alkyl iodide molecules were generated in situ from less reactive halogenides, which significantly accelerated the alkylation reaction. The effectiveness of potassium iodide catalysis was proved by experiments performed under the same conditions in the absence of this salt.

References

     1.           Boeglin, D. and Lubell, W. D. Aza-amino acid scanning of secondary structure suited for solid-phase peptide synthesis with Fmoc chemistry and aza-amino acids with heteroatomic side chains. J. Comb. Chem., 2005, 7, 864–878.
https://doi.org/10.1021/cc050043h

    2.           Quibell, M., Turnell, W. G., and Johnson, T. Synthesis of azapeptides by the Fmoc/tert-butyl/polyamide technique. J. Chem. Soc., Perkin Trans. 1, 1993, 2843–2849.
https://doi.org/10.1039/p19930002843

    3.           Zega, A. Azapeptides as pharmacological agents. Curr. Med. Chem., 2005, 12, 589–597.
https://doi.org/10.2174/0929867310504050589
https://doi.org/10.2174/0929867053362802

    4.           Proulx, C., Sabatino, D., Hopewell, R., Spiegel, J., Garcia Ramos, Y., and Lubell, W. D. Azapeptides and their therapeutic potential. Future Med. Chem., 2011, 3, 1139–1164.
https://doi.org/10.4155/fmc.11.74

    5.           Fässler, A., Bold, G., Capraro, H.-G., Cozens, R., Mestan, J., Poncioni, B., et al. Aza-peptide analogs as potent human immunodeficiency virus type-1 protease inhibitors with oral bioavailability. J. Med. Chem., 1996, 39, 3203–3216.
https://doi.org/10.1021/jm960022p

    6.           Venkatraman, S., Wu, W., Shih, N.-Y., and Njoroge, F. G. Potent aza-peptide derived inhibitors of HCV NS3 protease. Bioorg. Med. Chem. Lett., 2009, 19, 4760–4763.
https://doi.org/10.1016/j.bmcl.2008.10.124
https://doi.org/10.1016/j.bmcl.2009.06.060

    7.           Staal, E. and Faurholt, C. Carbamates. IV. The carbamate of hydrazine. Dansk Tidsskrift for Farmaci, 1951, 25, 112.

    8.           Mastitski, A., Kisseljova, K., and Järv, J. Synthesis of the Fmoc-aza-Arg(Boc)2 precursor via hydrazine alkylation. Proc. Estonian Acad. Sci., 2014, 63, 438–443.
https://doi.org/10.3176/proc.2014.4.09

    9.           Mastitski, A., Haljasorg, T., Kipper, K., and Järv, J. Synthesis of aza-phenylalanine, aza-tyrosine, and aza-tryptophan precursors via hydrazine alkylation. Proc. Estonian. Acad. Sci., 2015, 64, 168–178.
https://doi.org/10.3176/proc.2015.2.05

 10.           Busnel, O., Bi, L., Dali, H., Cheguillaume, A., Chevance, S., Bondon, A., et al. Solid-phase synthesis of “mixed” peptidomimetics using Fmoc-protected aza-β3-amino acids and α-amino acids. J. Org. Chem., 2005, 70, 10701–10708.
https://doi.org/10.1021/jo051585o

 11.           Busnel, O. and Baudy-Floc’h, M. Preparation of new monomers aza-β3-aminoacids for solid-phase syntheses of aza-β3-peptides. Tetrahedron Lett., 2007, 48, 5767–5770.
https://doi.org/10.1016/j.tetlet.2007.06.082

 12.           Ruan, M., Nicolas, I., and Baudy-Floc’h, M. New building blocks or dendritic pseudopeptides for metal chelating. SpringerPlus, 2016, 5, 55.
https://doi.org/10.1186/s40064-016-1703-x

 13.           Ragnarsson, U. Synthetic methodology for alkyl sub­stituted hydrazines. Chem. Soc. Rev., 2001, 30, 205–213.
https://doi.org/10.1039/b010091a

 14.           Lee, J. and Bogyo, M. Development of near-infrared fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain. ACS Chem. Biol., 2010, 5, 233–243.
https://doi.org/10.1021/cb900232a

 15.           Spiegel, J., Mas-Moruno, C., Kessler, H., and Lubell, W. D. Cyclic aza-peptide integrin ligand synthesis and bio­logical activity. J. Org. Chem., 2012, 77, 5271–5278.

 16.           Zouikri, M., Vicherat, A., Marraud, M., and Boussar, G. Azaproline as a beta-turn-inducer residue opposed to proline. J. Pept. Res., 1998, 52, 19–26.
https://doi.org/10.1111/j.1399-3011.1998.tb00648.x

 17.           Garcia-Ramos, Y., Proulx, C., and Lubell, W. D. Synthesis of hydrazine and azapeptide derivatives by alkylation of carbazates and semicarbazones. Can. J. Chem., 2012, 90, 11, 985–993.
https://doi.org/10.1139/v2012-070

 18.           Traoré, M., Doan, N. D., and Lubell, W. D. Diversity-oriented synthesis of azapeptides with basic amino acid residues: aza-lysine, aza-ornithine, and aza-arginine. Org. Lett., 2014, 16, 3588–3591.
https://doi.org/10.1021/ol501586y

 19.           Douchez, A. and Lubell, W. D. Chemoselective alkylation for diversity-oriented synthesis of 1,3,4-benzotriazepin-2-ones and pyrrolo[1,2][1,3,4]benzotriazepin-6-ones, potential turn surrogates. Org. Lett., 2015, 17, 6046–6049.
https://doi.org/10.1021/acs.orglett.5b03046

 20.           Doan, N.-D., Zhang, J., Traoré, M., Kamdem, W., and Lubell, W. D. Solid-phase synthesis of C-terminal azapeptides. J. Pept. Sci., 2015, 21, 387–391.
https://doi.org/10.1002/psc.2711

 21.           Merlino, F., Yousif, A. M., Billard, E., Dufour-Gallant, J., Turcotte, S., Grieco, P., et al. Urotensin II(4–11) azasulfuryl peptides: synthesis and biological activity. J. Med. Chem., 2016, 59, 4740−4752.
https://doi.org/10.1021/acs.jmedchem.6b00108

 22.           Romera, J. L., Cid, J. M., and Trabanco, A. A. Potassium iodide catalyzed monoalkylation of anilines under microwave irradiation. Tetrahedron Lett., 2004, 45, 8797–8800.
https://doi.org/10.1016/j.tetlet.2004.10.002

 23.           Kabalka, G. W., Reddy, N. K., and Narayana, C. Lithium iodide-catalyzed alkylation of carboranes. Tetrahedron Lett., 1992, 33, 7687–7688.
https://doi.org/10.1016/0040-4039(93)88017-D

 24.           Satoh, T., Matsue, R., Fujii, T., and Morikawa, S. Alkylation of nonstabilized aziridinylmagnesiums catalyzed by Cu(I) iodide: a new synthesis of amines, including optically active form, bearing a quaternary chiral center. Tetrahedron Lett., 2000, 41, 6495–6499.
https://doi.org/10.1016/S0040-4039(00)01085-6

 25.           Carpino, L. A. and Han, G. Y. The 9-fluorenylmethoxy­carbonyl amino-protecting group. J. Org. Chem., 1972, 37, 3404–3409.
https://doi.org/10.1021/jo00795a005

 26.           Rabjohn, N. The synthesis and reactions of disazodi­carboxylates. J. Am. Chem. Soc., 1948, 70, 1181–1183.

 27.           McKay, F. C. and Albertson, N. F. New amine-masking groups for peptide synthesis. J. Am. Chem. Soc., 1957, 79, 4686–4690.
https://doi.org/10.1021/ja01574a029

 28.           Dourlat, J., Liu, W.-Q., Gresh, N., and Garbay, C. Novel 1,4-benzodiazepine derivatives with antiproliferative properties on tumor cell lines. Biorg. Med. Chem. Lett., 2007, 17, 2527–2530.
https://doi.org/10.1016/j.bmcl.2007.02.016

 29.           Mäeorg, U., Pehk, T., and Ragnarsson, U. Synthesis of substituted hydrazines from triprotected precursors. Acta Chem. Scan., 1999, 53, 1127–1133.
https://doi.org/10.3891/acta.chem.scand.53-1127

 30.           Carpino, L. A., Santilli, A. A., and Murray, R. W. Oxidative reactions of hydrazines. V. Synthesis of monobenzyl 1,1-disubstituted hydrazines and 2-amino-2,3-dihydro-1H-benz[de]isoquinoline. J. Am. Chem. Soc., 1960, 82, 2728–2731.
https://doi.org/10.1021/ja01496a019

 31.           Gwaltney, S. L., O’Connor, S. J., Nelson, L. T. J., Sullivan, G. M., Imade, H., Wang, W., et al. Aryl tetrahydro­pyridine inhibitors of farnesyltransferase: bioavailable analogues with improved cellular potency. Bioorg. Med. Chem. Lett., 2003, 13, 1363–1366.
https://doi.org/10.1016/S0960-894X(03)00094-5

 32.           Bouayad-Gervais, S. H. and Lubell, W. D. Examination of the potential for adaptive chirality of the nitrogen chiral center in aza-aspartame. Molecules, 2013, 18, 14739–14746.
https://doi.org/10.3390/molecules181214739

 33.           Squibb, E. R. and Sons, Inc. Preparation of N-Sub­stituted Azetidinone Derivatives as Antibiotics. Belgian patent BE 905 205; Chem. Abstr., 1988, 108, 693, 55 763e.

 34.           Peifer, M., Giacomo, F. D., Schandl, M., and Vasella, A. Oligonucleotide analogues with integrated bases and backbone hydrazide- and amide-linked analogues. 1. Design and synthesis of monomeric building blocks. Helv. Chim. Acta, 2009, 92, 1134–1166.
https://doi.org/10.1002/hlca.200900047

Hartmut, N. Hydrazinverbindungen als Heterobestandteile in Peptiden. VI. Weitere Derivate der Hydra­zinoessigsäure und ihre Verwendung zur Synthese von Hydrazino- und N-Amino-peptiden. Chem. Ber., 1965, 98, 3451–3461.
https://doi.org/10.1002/cber.19650981104

Back to Issue