headerpos: 9353
 
 
  Estonian Journal of Earth Sciences

ISSN 1736-7557 (electronic)  ISSN 1736-4728 (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences, Geology
Published since 1952

Estonian Journal of Earth Sciences

ISSN 1736-7557 (electronic)  ISSN 1736-4728 (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences, Geology
Published since 1952

Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Article Publication Charges
» Archival Policy
» Copyright and Licensing Policy
Guidelines for Authors
» Instructions to Authors
Guidelines for Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
Vol. 65, Issue 4
Vol. 65, Issue 3
Vol. 65, Issue 2
Vol. 65, Issue 1
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» 2007
» Back issues (full texts)
  in Google
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA
Keemia. Geoloogia
» ETERA_scan
Subscription Information
Internet Links
Support & Contact
Publisher
» Other Journals
» Staff

Modelling precipitation extremes in the Czech Republic: update of intensity–duration–frequency curves; pp. 234–247

(Full article in PDF format) doi: 10.3176/earth.2016.15


Authors

Michal Fusek, Radek Hellebrand, Jaroslav Michálek

Abstract

Precipitation records from six stations of the Czech Hydrometeorological Institute were subject to statistical analysis with the objectives of updating the intensity–duration–frequency (IDF) curves, by applying extreme value distributions, and comparing the updated curves against those produced by an empirical procedure in 1958. Another objective was to investigate differences between both sets of curves, which could be explained by such factors as different measuring instruments, measuring stations altitudes and data analysis methods. It has been shown that the differences between the two sets of IDF curves are significantly influenced by the chosen method of data analysis.

Keywords

intensity–duration–frequency curves, generalized Pareto distribution, threshold model, Czech Republic.

References

Ahammed , F. & Hewa , G. A. 2012. Development of hydro­logical tools using extreme rainfall events for Dhaka , Bangladesh. Water International , 37 , 43–52.
https://doi.org/10.1080/02508060.2012.645191

Alber , R. , Jaagus , J. & Oja , P. 2015. Diurnal cycle of pre­cipitation in Estonia. Estonian Journal of Earth Sciences , 64 , 305–313.
https://doi.org/10.3176/earth.2015.36

Alexander , G. N. , Karoly , A. & Susts , A. B. 1969. Equivalent distributions with applications to rainfall as an upper bound to flood distributions. Journal of Hydrology , 9 , 322–344.
https://doi.org/10.1016/0022-1694(69)90084-5
https://doi.org/10.1016/0022-1694(69)90025-0

Ashkar , F. , Bobee , B. , Rasmussen , P. & Rosbjerg , D. 1994. A perspective on the annual maximum flood approach to flood frequency analysis. In Stochastic and Statistical Methods in Hydrology and Environmental Engineering , Extreme Values: Floods and Droughts , Vol. 1 (Hipel , K. W. , ed.) , pp. 3–14. Kluwer , Dordrecht , NL.

Ben-Zvi , A. 1994. Fit of probability distributions to upper sub-samples of partial duration series. In Stochastic and Statistical Methods in Hydrology and Environmental Engineering , Extreme Values: Floods and Droughts , Vol. 1 (Hipel , K. W. , ed.) , pp. 95–107. Kluwer , Dord­recht , NL.

Ben-Zvi , A. 2009. Rainfall intensity–duration–frequency relation­ships derived from large partial duration series. Journal of Hydrology , 367 , 104–114.
https://doi.org/10.1016/j.jhydrol.2009.01.007

Buishand , T. A. 1989. The partial duration series method with a fixed number of peaks. Journal of Hydrology , 109 , 1–9.
https://doi.org/10.1016/0022-1694(89)90002-4

Butler , D. & Davies , J. 2004. Urban Drainage. 2nd edition , Spon Press , London , 568 pp.

Choulakian , V. & Stephens , M. A. 2001. Goodness-of-fit tests for the generalized Pareto distribution. Technometrics , 43 , 478–484.
https://doi.org/10.1198/00401700152672573

Chow , V. T. , Maidment , D. R. & Mays , L. W. 1988. Applied Hydrology. McGraw-Hill , New York , 572 pp.

Čížek , P. 1961. Hydrologie stokových sítí [Urban Drainage Hydrology]. SNTL , Prague , 136 pp. [in Czech].

Coles , S. 2004. An Introduction to Statistical Modeling of Extreme Values. Springer-Verlag , London , Berlin , Heidelberg 209 pp.

Cunnane , C. 1973. A particular comparison of annual maxima and partial duration series methods of flood frequency predictions. Journal of Hydrology , 18 , 257–271.
https://doi.org/10.1016/0022-1694(73)90051-6

Daňhelka , J. & Kubát , J. 2009. Přívalové povodně na území České republiky v červnu a červenci 2009 [Flash Floods in the Czech Republic in June and July 2009] , Ministry of Environment of the Czech Republic , Prague , 72 pp. [in Czech].

De Haan , L. & Ferreira , A. 2006. Extreme Value Theory. Springer , New York , XVIII , 418 pp.
https://doi.org/10.1007/0-387-34471-3

Harremoës P. & Mikkelsen , P. S. 1995. Properties of extreme point rainfall I: results from a rain gauge system in Denmark. Atmospheric Research , 37 , 277–286.
https://doi.org/10.1016/0169-8095(94)00053-G

Holešovský , J. , Fusek , M. & Michálek , J. 2014. Extreme value estimation for correlated observations. In MENDEL 2014 , 20th International Conference on Soft Computing (Matousek , R. , ed.) , pp. 359–364. Brno , Czech Republic.

Hosking , J. R. M. & Wallis , J. R. 1987. Parameter and quantile estimation for the generalized Pareto distribution. Techno­metrics , 29 , 339–349.

Kotz , S. & Nadarajah , S. 2005. Extreme Value Distributions. Imperial College Press , London , 196 pp.

Lang , M. , Ouarda , T. B. M. J. & Bobée , B. 1999. Towards operational guidelines for over-threshold modeling. Journal of Hydrology , 225 , 103–117.
https://doi.org/10.1016/S0022-1694(99)00167-5

Langousis , A. & Veneziano , D. 2007. Intensity–duration–frequency curves from scaling representations of rainfall. Water Resources Research , 43 , W02422.
https://doi.org/10.1029/2006WR005245

Madsen , H. , Pearson , C. P. & Rosbjerg , D. 1997a. Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events , 2. Regional modeling. Water Resources Research , 33 , 759–769.
https://doi.org/10.1029/96WR03849
https://doi.org/10.1029/96WR03848

Madsen , H. , Rasmussen , P. F. & Rosbjerg , D. 1997b. Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events. 1. At site modeling. Water Resources Research , 33 , 747–757.
https://doi.org/10.1029/96WR03849
https://doi.org/10.1029/96WR03848

Madsen , H. , Mikkelsen , P. S. , Rosbjerg , D. & Harremoës , P. 2002. Regional estimation of rainfall intensity–duration–frequency curves using generalized least squares regressions of partial duration series. Water Resources Research , 38 , 21-1–21-11.

Madsen , H. , Arnbjerg-Nielsen , K. & Mikkelsen , P. S. 2009. Update of regional intensity–duration–frequency curves in Denmark: tendency towards increased storm intensities. Atmospheric Research , 92 , 343–349.
https://doi.org/10.1016/j.atmosres.2009.01.013

McCuen , R. , Johnson , P. & Hromadka , T. 1993. Regionalized partial-duration balanced-hydrograph model. Journal of Irrigation and Drainage Engineering , 119 , 1036–1051.
https://doi.org/10.1061/(ASCE)0733-9437(1993)119:6(1036)

Mirhosseini , G. , Srivastava , P. & Stefanova , L. 2013. The impact of climate change on rainfall Intensity–Duration–Frequency (IDF) curves in Alabama. Regional Environ­mental Change , 13 , 25–33.

Rosbjerg , D. , Madsen , H. & Rasmussen , P. F. 1992. Prediction in partial duration series with generalized Pareto distribution exceedances. Water Resources Research , 28 , 3001–3010.
https://doi.org/10.1029/92WR01750

Smith , J. A. 1987. Estimating the upper tail of flood frequency distributions. Water Resources Research , 23 , 1657–1666.
https://doi.org/10.1029/WR023i008p01657

Takeuchi , K. 1984. Annual maximum series and partial duration series – Evaluation of Langbein’s formula and Chow’s discussion. Journal of Hydrology , 68 , 275–284.
https://doi.org/10.1016/0022-1694(84)90215-4

Todorovic , P. 1978. Stochastic models of floods. Water Resources Research , 14 , 345–356.
https://doi.org/10.1029/WR014i002p00345

Trupl , J. 1958. Intensity krátkodobých dešťů v povodích Labe , Odry a Moravy [Intensities of short time rainfalls in the catchments of the Elbe , Odra and Morava]. Water Research Institute , Prague , 76 pp. + maps [in Czech].

Van Montfort , M. A. J. & Witter , J. V. 1986. The generalized Pareto distribution applied to rainfall depths. Hydrological Science Journal , 31 , 151–162.
https://doi.org/10.1080/02626668609491037

Watt , E. & Marsalek , J. 2013. Critical review of the evolution of the design storm event concept. Canadian Journal of Civil Engineering , 40 , 105–113.
https://doi.org/10.1139/cjce-2011-0594

Willems , P. 2000. Compound intensity/duration/frequency-relation­ships of extreme precipitation for two seasons and two storm types. Journal of Hydrology , 233 , 189–205.
https://doi.org/10.1016/S0022-1694(00)00233-X

Yevjevich , V. 1972. Probability and Statistics in Hydrology. Water Resources Publications , Fort Collins , CO , 302 pp.

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:

No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December