headerpos: 9353
 
 
  Estonian Journal of Earth Sciences

ISSN 1736-7557 (electronic)  ISSN 1736-4728 (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences, Geology
Published since 1952

Estonian Journal of Earth Sciences

ISSN 1736-7557 (electronic)  ISSN 1736-4728 (print)
An international scientific journal

Formerly: Proceedings of the Estonian Academy of Sciences, Geology
Published since 1952

Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Article Publication Charges
» Archival Policy
» Copyright and Licensing Policy
Guidelines for Authors
» Instructions to Authors
Guidelines for Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
Vol. 65, Issue 4
Vol. 65, Issue 3
Vol. 65, Issue 2
Vol. 65, Issue 1
» 2015
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» 2007
» Back issues (full texts)
  in Google
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA
Keemia. Geoloogia
Subscription Information
Internet Links
Support & Contact
Publisher
» Other Journals
» Staff

Validation of the multi-mission altimeter wave height data for the Baltic Sea region; pp. 161–175

(Full article in PDF format) doi: 10.3176/earth.2016.13


Authors

Nadezhda A. Kudryavtseva, Tarmo Soomere

Abstract

We present a complete cross-validation of significant wave heights (SWH) extracted from altimetry data from all ten existing satellites with available in situ (buoy and echosounder) wave measurements for the Baltic Sea basin. The main purpose is to select an adequate altimetry data subset for a subsequent evaluation of the wave climate. The satellite measurements with the backscatter coefficients > 13.5 cdb, errors in the SWH normalized standard deviation > 0.5 m and snapshots with centroids closer than 0.2° to the land are not reliable. The ice flag usually denotes the ice concentration of > 50%. The presence of ice affects the SWH data starting from concentrations 10%, but substantial effects are only evident for concentrations > 30%. The altimetry data selected based on these criteria have very good correspondence with in situ data, except for GEOSAT Phase 1 data (1985–1989) that could not be validated. The root-mean-square difference of altimetry and in situ data is in the range of 0.23–0.37, which is significant for the Baltic Sea, compared with an average wave height of ~ 1 m. The bias for CRYOSAT-2, ERS-2, JASON-1/2 and SARAL data is below 0.06 m. The ENVISAT, ERS-1, GEOSAT and TOPEX satellites revealed larger biases up to 0.23 m. The SWH time series from several satellite pairs (ENVISAT/JASON-1, SARAL/JASON-2, ERS-1/TOPEX) exhibit substantial mutual temporal drift and part of them evidently are not homogeneous in time. A new high-resolution SWH data set from the SARAL satellite reveals a very good correspondence with the in situ data and with the data stream from previous satellites.

Keywords

altimeter, validation, significant wave height, Baltic Sea, wave climate, SARAL/AltiKa.

References

Alari , V. 2013. Multi-Scale Wind Wave Modeling in the Baltic Sea. PhD Thesis. Marine Systems Institute , Tallinn University of Technology , 134 pp.

Broman , B. , Hammarklint , T. , Rannat , K. , Soomere , T. & Valdmann , A. 2006. Trends and extremes of wave fields in the north-eastern part of the Baltic Proper. Oceanologia , 48(S) , 165–184.

Bronner , E. , Guillot , A. , Picot , N. & Noubel , J. 2013. SARAL/AltiKa Products Handbook. Centre National d’Etudes Spatiales , [online]. Available at http://www.aviso.oceanobs.com/fileadmin/documents/data/tools/SARAL_Altika_products_handbook.pdf [viewed 17 July 2016].

Cavaleri , L. & Sclavo , M. 2006. The calibration of wind and wave model data in the Mediterranean Sea. Coastal Engineering , 53(7) , 613–627.
http://dx.doi.org/10.1016/j.coastaleng.2005.12.006

Cieślikiewicz , W. , Paplińska-Swerpel , B. , Kowalewski , M. , Bradtke , K. & Jankowski , A. 2008. A 44-year hindcast of wind wave fields over the Baltic Sea. Coastal Engineering , 55(11) , 894–905.
http://dx.doi.org/10.1016/j.coastaleng.2008.02.017

Deng , J. , Zhang , W. , Harff , J. , Schneider , R. , Dudzinska-Nowak , J. , Terefenko , P. , Giza , A. & Furmanczyk , K. 2014. A numerical approach for approximating the historical morphology of wave-dominated coasts – A case study of the Pomeranian Bight , southern Baltic Sea. Geomorphology , 204 , 425–443.
http://dx.doi.org/10.1016/j.geomorph.2013.08.023

[ESA] European Space Agency , 2012. Cryosat Product Handbook. ESRIN–ESA , Mullard Space Science Laboratory , University College London. Available at https://earth.esa.int/ [viewed 17 July 2016].

Francis , O. P. , Panteleev , G. G. & Atkinson , D. E. 2011. Ocean wave conditions in the Chukchi Sea from satellite and in situ observations. Geophysical Research Letters , 38(24) , Article number L24610.
http://dx.doi.org/10.1029/2011GL049839

Gairola , R. M. , Prakash , S. , Mahesh , C. & Gohil , B. S. 2014. Model function for wind speed retrieval from SARAL-AltiKa radar altimeter backscatter: case studies with TOPEX and JASON Data. Marine Geodesy , 37( 4) , 379–388.
http://dx.doi.org/10.1080/01490419.2013.877545

Galanis , G. , Hayes , D. , Zodiatis , G. , Chu , P. C. , Kuo , Y.-H. & Kallos , G. 2012. Wave height characteristics in the Mediterranean Sea by means of numerical modeling , satellite data , statistical and geometrical techniques. Marine Geophysical Research , 33(1) , 1–15.
http://dx.doi.org/10.1007/s11001-011-9142-0

Giudici , A. & Soomere , T. 2015. Finnish Meteorological Institute’s open data mining tool. In 28th Nordic Seminar on Computational Mechanics , 22–23 October , Tallinn , 2015. Proceedings of the NSCM28 (Berezovski , A. , Tamm , K. & Peets , T. , eds) , pp. 59–62. CENS , Institute of Cybernetics at Tallinn University of Technology , Tallinn.

Harff , J. & Meyer , M. 2011. Coastlines of the Baltic Sea – zones of competition between geological processes and a changing climate: examples from the southern Baltic Sea. In The Baltic Sea Basin (Harff , J. , Björck , S. & Hoth , P. , eds) , pp. 149–164. Springer , Heidelberg , Dordrecht , London , New York.
http://dx.doi.org/10.1007/978-3-642-17220-5_7

Hithin , N. K. , Kumar , V. S. & Shanas , P. R. 2015. Trends of wave height and period in the Central Arabian Sea from 1996 to 2012: a study based on satellite altimeter data. Ocean Engineering , 108 , 416–425.
http://dx.doi.org/10.1016/j.oceaneng.2015.08.024

Høyer , J. L. & Nielsen , J. W. 2006. Satellite significant wave height observations in coastal and shelf seas. In Proceedings of the Symposium on 15 Years of Progress in Radar Altimetry , 13–18 March 2006 , Venice , Italy (Danesy , D. , ed.) , ESA Special Publication , SP-614 , Paper No. 812. Noordwijk , The Netherlands.

Hünicke , B. , Zorita , E. , Soomere , T. , Madsen , K. S. , Johansson , M. & Suursaar , U. 2015. Recent change – sea level and wind waves. In Second Assessment of Climate Change for the Baltic Sea Basin (The BACC II Author Team , ed.) , pp. 155–185. Regional Climate Studies , Springer , Cham , Heidelberg.

[JASON] Jason-2 , 2008. Jason-2 Handbook , SALP-MU-M-OP-15815-CN , Ed 1.2 , Aviso Website.

Kahma , K. K. & Calkoen , C. J. 1992. Reconciling dis­crepancies in the observed growth of wind-generated waves. Journal of Physical Oceanography , 22(12) , 1389–1405.
http://dx.doi.org/10.1175/1520-0485(1992)022<1389:RDITOG>2.0.CO;2

Kudryavtseva , N. , Soomere , T. & Giudici , A. 2016. Validation of multi-mission satellite altimetry for the Baltic Sea region. Geophysical Research Abstracts , 18 , EGU2016-5571.

Kumar , U. M. , Swain , D. , Sasamal , S. K. , Reddy , N. N. & Ramanjappa , T. 2015. Validation of SARAL/AltiKa significant wave height and wind speed observations over the North Indian Ocean. Journal of Atmospheric and Solar-Terrestrial Physics , 135 , 174–180.
http://dx.doi.org/10.1016/j.jastp.2015.11.003

Leppäranta , M. & Myrberg , K. 2009. Physical Oceanography of the Baltic Sea. Springer , Berlin , 378 pp.
http://dx.doi.org/10.1007/978-3-540-79703-6

Liu , Q. , Lewis , T. , Zhang , Y. & Sheng , W. 2014. Exprimental study on the wave measurements of wave buoys. In 5th International Conference on Ocean Energy , 4–6 November , Halifax , pp. 1–7. Available at http: //www.icoe2014canada.org/wp-content/uploads/2014/11/ LiuQuilinARTICLE_18-4.pdf [viewed 17 July 2016].

Martensson , M. & Bergdahl , L. 1987. On the Wave Climate of the Southern Baltic. Report Series A:15 , Department of Hydraulics , Chalmers University of Technology , Sweden.

Monaldo , F. 1988. Expected differences between buoy and radar altimeter estimates of wind speed and significant wave height and their implications on buoy-altimeter comparisons. Journal of Geophysical Research , 93(C3) , 2285–2302.
http://dx.doi.org/10.1029/JC093iC03p02285

Nikolkina , I. , Soomere , T. & Räämet , A. 2014. Multidecadal ensemble hindcast of wave fields in the Baltic Sea. In The 6th IEEE/OES Baltic Symposium “Measuring and Modeling of Multi-Scale Interactions in the Marine Environment” , May 26–29 , Tallinn , Estonia , pp. 1–9. IEEE Conference Publications.
http://dx.doi.org/10.1109/baltic.2014.6887854

Orviku , K. , Jaagus , J. , Kont , A. , Ratas , U. & Rivis , R. 2003. Increasing activity of coastal processes associated with climate change in Estonia. Journal of Coastal Research , 19(2) , 364–375.

Pettersson , H. , Kahma , K. K. & Tuomi , L. 2010. Wave directions in a narrow bay. Journal of Physical Oceanography , 40(1) , 155–169.
http://dx.doi.org/10.1175/2009JPO4220.1

Pettersson , H. , Lindow , H. & Brüning , T. 2013. Wave Climate in the Baltic Sea 2012. HELCOM Baltic Sea Environ­ment Fact Sheets 2012. Available at http://helcom.fi/ baltic-sea-trends/environment-fact-sheets/hydrography/ wave-climate-in-the-baltic-sea/ [viewed 17 July 2016].

Pindsoo , K. & Soomere , T. 2015. Contribution of wave set-up into the total water level in the Tallinn area. Proceedings of the Estonian Academy of Sciences , 64(3) , 338–348.
http://dx.doi.org/10.3176/proc.2015.3S.03

Queffeulou , P. 2004. Long term validation of wave height measurements from altimeters. Marine Geodesy , 27(3–4) , 495–510.
http://dx.doi.org/10.1080/01490410490883478

Queffeulou , P. , Bentamy , A. & Croizé-Fillon , D. 2010. Analysis of seasonal wave height anomalies from satellite data over the global oceans. In Proceedings of the ESA Living Planet Symposium , 28 June–2 July , Bergen , Norway , SP-686 , December 2010. ESA.

Queffeulou , P. & Croizé-Fillon , D. 2012. Global Altimeter SWH Data Set. Technical Report , IFREMER , Brest.

Räämet , A. , Suursaar , Ü. , Kullas , T. & Soomere , T. 2009. Reconsidering uncertainties of wave conditions in the coastal areas of the northern Baltic Sea. Journal of Coastal Research , Special Issue , 56 , 257–261.

R Core Team , 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing , Vienna , Austria. Available at https://www.R-project.org/ [viewed 17 July 2016].

Rikka , S. , Uiboupin , R. & Alari , V. 2014. Estimation of wave field parameters from TerraSAR-X imagery in the Baltic Sea. In The 6th IEEE/OES Baltic Symposium “Measuring and Modeling of Multi-Scale Interactions in the Marine Environment” , May 26–29 , Tallinn , Estonia , pp. 1–6. IEEE Conference Publications.
http://dx.doi.org/10.1109/baltic.2014.6887849

Ruest , B. , Neumeier , U. , Dumont , D. , Bismuth , E. , Senneville , S. & Caveen , J. 2016. Recent wave climate and expected future changes in the seasonally ice-infested waters of the Gulf of St. Lawrence , Canada. Climate Dynamics , 46(1) , 449–466.
http://dx.doi.org/10.1007/s00382-015-2592-3

Ryabchuk , D. , Kolesov , A. , Chubarenko , B. , Spiridonov , M. , Kurennoy , D. & Soomere , T. 2011. Coastal erosion processes in the eastern Gulf of Finland and their links with geological and hydrometeorological factors. Boreal Environment Research , 16(Suppl. A) , 117–137.

Sandwell , D. T. & McAdoo , D. C. 1988. Marine gravity of the Southern Ocean and Antarctic Margin from Geosat. Journal of Geophysical Research , 93(B9) , 10389–10396.
http://dx.doi.org/10.1029/JB093iB09p10389

Shaeb , K. H. B , Ananda , A. , Joshi , A. K. & Bhandari , S. M. 2015. Comparison of near coastal significant wave height measurements from SARAL/AltiKa with wave rider buoys in the Indian region. Marine Geodesy , 38(1) , 422–436.
http://dx.doi.org/10.1080/01490419.2015.1029655

Scharroo , R. 2012. RADS version 3.1 User Manual and Format Specifications. Available at http://rads.tudelft.nl/rads/ radsmanual.pdf [viewed 17 July 2016].

Scharroo , R. , Leuliette , E. W. , Lillibridge , J. L. , Byrne , D. , Naeije , M. C. & Mitchum , G. T. 2013. RADS: consistent multi-mission products. In Proceedings of the Symposium on 20 Years of Progress in Radar Altimetry , Venice , 20–28 September 2012. European Space Agency Special Publication , SP-710 , 1–4.

Seifert , T. , Tauber , F. & Kayser , B. 2001. A high resolution spherical grid topography of the Baltic Sea. 2nd ed. In Baltic Sea Science Congress , Stockholm 25–29. November 2001 , Poster 147. Available at www.io-warnemuende.de/iowtopo [viewed 17 July 2016].

Soomere , T. 2016. Extremes and decadal variations in the Baltic Sea wave conditions. In Extreme Ocean Waves (Pelinovsky , E. & Kharif , C. , eds) , pp. 107–140. Springer.
http://dx.doi.org/10.1007/978-3-319-21575-4_7

Soomere , T. & Räämet , A. 2011. Spatial patterns of the wave climate in the Baltic Proper and the Gulf of Finland. Oceanologia , 53(1-TI) , 335–371.
http://dx.doi.org/10.5697/oc.53-1-TI.335

Soomere , T. & Räämet , A. 2014. Decadal changes in the Baltic Sea wave heights. Journal of Marine Systems , 129 , 86–95.
http://dx.doi.org/10.1016/j.jmarsys.2013.03.009

Soomere , T. , Behrens , A. , Tuomi , L. & Woge Nielsen , J. 2008. Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Natural Hazards and Earth System Science , 8(1) , 37–46.
http://dx.doi.org/10.5194/nhess-8-37-2008

Soomere , T. , Weisse , R. & Behrens , A. 2012. Wave climate in the Arkona basin , Baltic Sea. Ocean Science , 8 , 287–300.
http://dx.doi.org/10.5194/os-8-287-2012

Suursaar , Ü. 2013. Locally calibrated wave hindcasts in the Estonian coastal sea in 1966–2011. Estonian Journal of Earth Sciences , 62(1) , 42–56.
http://dx.doi.org/10.3176/earth.2013.05

Suursaar , Ü. 2015. Analysis of wave time series in the Estonian coastal sea in 2003–2014. Estonian Journal of Earth Sciences , 64(4) , 289–304.
http://dx.doi.org/10.3176/earth.2015.35

Suursaar , Ü. , Alari , V. & Tõnisson , H. 2014. Multi-scale analysis of wave conditions and coastal changes in the north-eastern Baltic Sea. Journal of Coastal Research , 70 , 223–228.
http://dx.doi.org/10.2112/SI70-038.1

Taylor , P. K. , Dunlap , E. , Dobson , F. W. , Anderson , R. J. & Swail , V. R. 2002. On the accuracy of wind and wave measurements from buoys. In Presentations at the DBCP Technical Workshop “Developments in Buoy Technology , Communications , Science and Data Applications” , Perth , Australia , October 22–23 , 2001. DBCP Technical Document No. 21 , 15 pp.

Tõnisson , H. , Suursaar , Ü. , Orviku , K. , Jaagus , J. , Kont , A. , Willis , D. A. & Rivis , R. 2011. Changes in coastal processes in relation to changes in large-scale atmospheric circulation , wave parameters and sea levels in Estonia. Journal of Coastal Research , Special Issue 64 , 701–705.

Tuomi , L. , Kahma , K. K. & Pettersson , H. 2011. Wave hind­cast statistics in the seasonally ice-covered Baltic Sea. Boreal Environment Research , 16( 6) , 451–472.

Tuomi , L. , Kahma , K. K. & Fortelius , C. 2012. Modelling fetch-limited wave growth from an irregular shoreline. Journal of Marine Systems , 105 , 96–105.
http://dx.doi.org/10.1016/j.jmarsys.2012.06.004

Tuomi , L. , Pettersson , H. , Fortelius , C. , Tikka , K. , Bjórkqvist , J.-V. & Kahma , K. K. 2014. Wave modelling in archipelagos. Coastal Engineering , 83 , 205–220.
http://dx.doi.org/10.1016/j.coastaleng.2013.10.011

Vignudelli , S. , Kostianoy , A. G. , Cipollini , P. & Benveniste , J. (eds). 2011. Coastal Altimetry. Springer , Heidelberg , 566 pp.

Viška , M. & Soomere , T. 2012. Hindcast of sediment flow along the Curonian Spit under different wave climates. In Proceedings of the IEEE/OES Baltic 2012 International Symposium “Ocean: Past , Present and Future. Climate Change Research , Ocean Observation & Advanced Technologies for Regional Sustainability'' , May 8–11 , Klaipėda , Lithuania , pp. 1–7. IEEE Conference Publications.

Wadhams , P. , Squire , V. A. , Goodman , D. J. , Cowan , A. M. & Moore , S. C. 1988. The attenuation rates of ocean waves in the marginal ice zone. Journal of Geophysical Research , 93(C6) , 6799–6818.
http://dx.doi.org/10.1029/JC093iC06p06799

Young , I. R. , Zieger , S. & Babanin , A. V. 2011. Global trends in wind speed and wave height. Science , 332(6028) , 451–455.
http://dx.doi.org/10.1126/science.1197219

Zhang , W. , Deng , J. , Harff , J. , Schneider , R. & Dudzinska-Nowak , J. 2013. A coupled modeling scheme for long­shore sediment transport of wave-dominated coasts – A case study from the southern Baltic Sea. Coastal Engineering , 72 , 39–55.
http://dx.doi.org/10.1016/j.coastaleng.2012.09.003

Zieger , S. , Vinoth , J. & Young , I. R. 2009. Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 years. Journal of Atmospheric and Oceanic Technology , 26(12) , 2549–2564.
http://dx.doi.org/10.1175/2009JTECHA1303.1

 
Back

Current Issue: Vol. 68, Issue 1 in Press, 2019




Publishing schedule:

No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December