headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

A concept for performance measurement and evaluation in network industries; pp. 536–542

(Full article in PDF format) doi: 10.3176/proc.2015.4S.01


Authors

Kristjan Kuhi, Kati Kõrbe Kaare, Ott Koppel

Abstract

The structure and functioning of network industries have a great effect on the well-being of society, being also prerequisites for economic growth and productivity. Social goals, industry trends, ownership structures, and the economic environment play an important role in the development of such networks. Most network industries enjoy a dominant position on the market. Their performance is steered by national regulatory authorities via price control and quality requirements. For this the regulatory authorities need besides financial indicators feedback on the technical performance of the provided services. The vast development in sensing, data transmission, and collection technologies, as well as in analytical methods, has made it possible and feasible to acquire the needed feedback. Such comprehensive data enable to construct a performance measurement system to regulate, develop, and administer the networks. This paper explores the possibility of developing an overall technical performance index and presents a relevant concept. The suggested overall index would be an additional regulatory tool to evaluate the performance of network industries and their compliance with consumers’ requirements. The aim of the proposed concept is to establish empirically verifiable feedback between a given state of technology, state of institutional governance, and the performance of network industries.

Keywords

industrial engineering, network industries, performance indicators, system architecture.

References

  1. Oswald , M. , Li , Q. , McNeil , S. , and Trimbath , S. Measur­ing infrastructure performance: development of a national infrastructure index. Public Works Manage­ment & Policy , 2011 , 16(4) , 373–394.
http://dx.doi.org/10.1177/1087724X11410071

  2. Göttinger , H. Economies of Network Industries. Routledge , London , 2003.
http://dx.doi.org/10.4324/9780203417997

  3. A Methodological Note for the Horizontal Evaluation of Services of General Economic Interest. European Commission , Brussels , 2002.

  4. Uukkivi , R. , Ots , M. , and Koppel , O. Systematic approach to economic regulation of network industries in Estonia. Trames: J. Humanit. Soc. Sci. , 2014 , 18(3) , 221–241.
http://dx.doi.org/10.3176/tr.2014.3.02

  5. Brignall , S. and Modell , S. An institutional perspective on performance measurement and management in the ‘new public sector’. Manage. Account. Res. , 2000 , 11 , 281–306.
http://dx.doi.org/10.1006/mare.2000.0136

  6. Kõrbe Kaare , K. Performance Measurement of a Road Network: A Conceptual and Technological Approach for Estonia. TUT Press , Tallinn , 2013.

  7. Hagerty , J. and Hofman , D. Defining a Measurement Strategy , Part III. BI Review , 2006 , 8.

  8. Performance Measurement Fundamentals. U.S. Federal Highway Administration , Washington , 1998.

  9. De Toni , A. and Tonchia , S. Performance measurement systems. Models , characteristics and measures. Int. J. Oper. Prod. Man. , 2001 , 21(1/2) , 46–71.
http://dx.doi.org/10.1108/01443570110358459

10. Ghalayini , A. M. and Noble , J. S. The changing basis of performance measurement. Int. J. Oper. Prod. Man. , 1996 , 16(8) , 63–80.
http://dx.doi.org/10.1108/01443579610125787

11. How to Measure Performance. A Handbook of Techniques and Tools. U.S. Department of Energy , Washington , 1995.

12. Sinclair , D. and Zairi , M. An empirical study of key elements of total quality-based performance measure­ment systems: a case study approach in the service industry sector. Total Qual. Manage. , 2001 , 12(4) , 535–550.
http://dx.doi.org/10.1080/09544120120066127

13. Zheng , J. , Garrick , N. W. , Atkinson-Palombo , C. , McCahill , C. , and Marshall , W. Guidelines on develop­ing performance metrics for evaluating transportation sustainability. Research in Transportation Business & Management , 2013 , 7 , 4–13.
http://dx.doi.org/10.1016/j.rtbm.2013.02.001

14. Kaare , K. K. and Koppel , O. Performance measurement data as an input in national transportation policy. In Proc. XXVIII Int. Baltic Road Conf. Baltic Road Association , Vilnius , 2013 , 1–9 [CD-ROM].

15. Ismail , M. A. , Sadiq , R. , Soleymani , H. R. , and Tesfamariam , S. Developing a road performance index using a Bayesian belief network model. J. Franklin Inst. , 2011 , 348 , 2539–2555.
http://dx.doi.org/10.1016/j.jfranklin.2011.07.015

16. Litzka , J. , Leben , B. , La Torre , F. et al. The Way Forward for Pavement Performance Indicators Across Europe. COST Action 354 Final Report. Austrian Transporta­tion Research Association , Vienna , 2008.

17. Lurdes Antunes , M. de. Framework for Implementation of Environment Key Performance Indicators. EVITA (Environmental Indicators for the Total Road Infra­structure Assets) , Deliverable D4.1. Institut Français des Sciences et des Technologies des Transports , de l’Aménagement et des Réseaux , and PMS-Consult , 2011.

18. Kuhi , K. , Kõrbe Kaare , K. , and Koppel , O. Performance measurement in network industries: example of power distribution and road networks. In Proc. 9th Int. Conf. DAAAM Baltic Industrial Engineering (Otto , T. , ed.). TUT Press , Tallinn , 2014 , 115–120.

19. Davey , E. Rail Traffic Management Systems (TNS). In IET Professional Development Course on Railway Signalling and Control Systems (RSCS). IET , London , 2012 , 126–143.
http://dx.doi.org/10.1049/ic.2012.0048

20. Corriere , F. and Di Vincenzo , D. The rail quality index as an indicator of the “global comfort” in optimizing safety , quality and efficiency in railway rails. Procedia – Social and Behavioral Sciences , 2012 , 53 , 1090–1099.
http://dx.doi.org/10.1016/j.sbspro.2012.09.958

21. Tsang , A. H. C. A strategic approach to managing main­tenance performance. J. Qual. Mainten. Eng. , 1998 , 4(2) , 87–94.
http://dx.doi.org/10.1108/13552519810213581

22. Åhrén , T. and Parida , A. Maintenance performance indicators (MPIs) for benchmarking the railway infrastructure. Benchmarking , 2009 , 16(2) , 247–258.
http://dx.doi.org/10.1108/14635770910948240

23. Parida , A. Development of a Multi-criteria Hierarchical Framework for Maintenance Performance Measure­ment: Concepts , Issues and Challenges. Luleå University of Technology , 2006.

24. Kumar , U. , Galar , D. , Parida , A. , Stenström , C. , and Berges , L. Maintenance performance metrics: a state-of-the-art review. J. Qual. Mainten. Eng. , 2013 , 19(3) , 233–277.
http://dx.doi.org/10.1108/JQME-05-2013-0029

25. Queiroz , L. M. O. de. Assessing the Overall Performance of Brazilian Electric Distribution Companies. The George Washington University , Washington , 2012.

26. Electricity Network Performance Report 2011/2012. Ausgrid , 2011.

27. Gosbell , V. J. , Perera , B. S. P. , and Herath , H. M. S. C. Unified Power Quality Index (UPQI) for continuous disturbances. In 10th Int. Conf. Harmonics and Quality of Power , 2002 , 1 , 316–321.
http://dx.doi.org/10.1109/ichqp.2002.1221452

28. Meldorf , M. , Tammoja , H. , Treufeldt , Ü. , and Kilter , J. Jaotusvõrgud [Distribution Networks]. TUT Press , Tallinn , 2007 (in Estonian).

29. Markiewicz , H. and Klajn , A. Standard EN 50160 – Voltage Characteristics in Public Distribution Systems. European Copper Institute , Brussels , 2004.

30. IEEE Guide for Electric Power Distribution Reliability Indices. IEEE , New York , 2012.

31. Reliability Benchmarking Application Guide for Utility/Customer PQ Indices. Electric Power Research Institute , Palo Alto , 1999.

32. Billinton , R. and Li , W. Reliability Assessment of Electrical Power Systems Using Monte Carlo Methods. Plenum Press , New York , 1994.
http://dx.doi.org/10.1007/978-1-4899-1346-3

33. Waverman , L. and Koutroumpis , P. Benchmarking tele­coms regulation – the Telecommunications Regulatory Governance Index (TRGI). Telecommun. Policy , 2011 , 35 , 450–468.
http://dx.doi.org/10.1016/j.telpol.2011.03.006

34. Matteson , S. Methods for multi-criteria sustainability and reliability assessments of power systems. Energy , 2014 , 71 , 130–136.
http://dx.doi.org/10.1016/j.energy.2014.04.042

35. Shukla , V. and Dubey , P. K. Big data: beyond data hand­ling. Int. J. Scientific Research And Education , 2014 , 2(9) , 1929–1935.

36. Kaisler , S. , Armour , F. , Espinosa , J. A. , and Money , W. Big data: issues and challenges moving forward. In 46th Hawaii Int. Conf. System Sciences (HICSS). IEEE , Wailea , 2013 , 995–1004.
http://dx.doi.org/10.1109/hicss.2013.645

37. Big Data Analytics Guidebook. Unleashing Business Value in Big Data. TM Forum , Morristown , 2014.

38. Yang , H. , Dasdan , A. , Hsiao , R.-L. , and Parker , D. S. Map-reduce-merge: simplified relational data pro­cessing on large clusters. In Proc. ACM SIGMOD Int. Conf. Management of Data. ACM , New York , 2007 , 1029–1040.
http://dx.doi.org/10.1145/1247480.1247602

39. Wu , E. , Diao , Y. , and Rizvi , S. High-performance complex event processing over streams. In Proc. ACM SIGMOD Int. Conf. Management of Data. ACM , New York , 2006 , 407–418.
http://dx.doi.org/10.1145/1142473.1142520

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December