headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Production monitoring system development and modification; pp. 567–580

(Full article in PDF format) doi: 10.3176/proc.2015.4S.04


Authors

Aleksei Snatkin, Tanel Eiskop, Kristo Karjust, Jüri Majak

Abstract

Main attention of this paper is paid to the development of a simple, but efficient concept of a real time production monitoring system. The goal is to offer an effective concept, which will help to provide an accurate overview of the shop floor activities by diverse information appearance and improve asset management, machinery utilization, and production process stability. The subtask considered includes description of the design of a visual module for the proposed production monitoring system for a certain type of micro, small and medium sized enterprises.

Keywords

production monitoring, remote monitoring, manufacturing execution system, shop floor visibility.

References

  1. Jardine , A. , Lin , D. , and Banjevic , D. A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. , 2006 , 20 , 1483–1510.
http://dx.doi.org/10.1016/j.ymssp.2005.09.012

  2. Cowling , P. and Johansson , M. Using real time informa­tion for effective dynamic scheduling. Eur. J. Oper. Res. , 2002 , 139 , 230–244.
http://dx.doi.org/10.1016/S0377-2217(01)00355-1

  3. Gu , Y. , Lo , A. , and Niemegeers , I. A survey of indoor positioning systems for wireless personal networks. IEEE Communications Surveys & Tutorials , 2009 , 11(1) , 13–32.
http://dx.doi.org/10.1109/SURV.2009.090103

  4. Lanza , G. , Stoll , J. , Stricker , N. , Peters , S. , and Lorenz , C. Measuring global production effectiveness. Procedia CIRP , 2013 , 7 , 31–36.
http://dx.doi.org/10.1016/j.procir.2013.05.006

  5. Saenz de Ugarte , B. , Ariba , A. , and Pellerin , R. Manu­facturing execution system – a literature review. Prod. Plan. Control , 2009 , 20 , 525–539.
http://dx.doi.org/10.1080/09537280902938613

  6. Meyer , H. , Fuchs , F. , and Thiel , K. Manufacturing Execu­tion Systems: Optimal Design , Planning , and Deploy­ment. McGraw-Hill , New York , 2009.

  7. Bo , L. , Zhenghang , C. , and Ying , C. Research on recon­figurable manufacturing execution system. In Proc. 2004 International Conference on Intelligent Mecha­tronics and Automation. Piscataway , N.J. , 2004 , 157–161.

  8. Ben Khedher , A. , Henry , S. , and Bouras , A. Integration between MES and product lifecycle management. In Proc. 2011 IEEE 16th Conference on Emerging Technologies & Factory Autom. (Mammeri , Z. , ed.). Toulouse , 2011 , 1–8.
http://dx.doi.org/10.1109/etfa.2011.6058993

  9. Snatkin , A. , Karjust , K. , Majak , J. , Aruväli , T. , and Eiskop , T. Real time production monitoring system in SME. Estonian J. Eng. , 2013 , 19 , 62–75.
http://dx.doi.org/10.3176/eng.2013.1.06

10. Eiskop , T. , Snatkin , A. , Kõrgesaar , K. , and Søren , J. Develop­ment and application of a holistic production monitoring system. In Proc. 9th International Conference of DAAAM Baltic Industrial Engineering (Otto , T. , ed.). Tallinn University of Technology , Tallinn , Estonia , 2014 , 85–91.

11. Snatkin , A. , Eiskop , T. , and Kõrgesaar , K. Production monitoring system concept development. In Proc. 9th International Conference of DAAAM Baltic Industrial Engineering (Otto , T. , ed.). Tallinn University of Technology , Tallinn , Estonia , 2014 , 198–203.

12. Hashem , I. A. T. , Yaqoob , I. , Anuar , I. N. B. , Mokhtar , S. , Gani , A. , and Khan , S. U. The rise of “big data” on cloud computing: Review and open research issues. Inform. Syst. , 2015 , 47 , 98–115.
http://dx.doi.org/10.1016/j.is.2014.07.006

13. Heron , M. , Hanson , V. L. , and Ricketts , I. Open source and accessibility: advantages and limitation. J. Interact. Sci. , 2013 , 1 , 1–10.
http://dx.doi.org/10.1186/2194-0827-1-2

14. Wasko , M. M. and Faraj , S. “It is what one does”: why people participate and help others in electronic communities of practice. J. Strategic Informat. Syst. , 2000 , 9 , 155–173.
http://dx.doi.org/10.1016/S0963-8687(00)00045-7

15. Oakland , S. J. Statistical Process Control (6th ed.). Butter­worth-Heinemann , Oxford , 2008.

16. Hines , J. W. and Usynin , A. Current computational trends in equipment prognostics. Int. J. Comput. Intell. Syst. , 2008 , 1 , 94–102.
http://dx.doi.org/10.2991/ijcis.2008.1.1.7

17. Camci , F. , Eker , O. F. , and Jennions , I. K. Major challenges in prognostics: study on benchmarking prognostics datasets , In Proc. First European Con­ference of the Prognostics and Health Management Society 2012 (Bregon , A. and Saxena , A. , eds). PHMS , Dresden , Germany , 2012 , 148–155.

18. Zhang , Q. , Hua , C. , and Xu , G. A mixture Weibull proportional hazard model for mechanical system failure prediction utilising lifetime and monitoring data. Mech. Syst. Signal Process. , 2014 , 43 , 103–112.
http://dx.doi.org/10.1016/j.ymssp.2013.10.013

19. Khemapech , I. Feasibility study of direct communication in wireless sensor networks. Procedia Computer Sci. , 2013 , 21 , 424–429.
http://dx.doi.org/10.1016/j.procs.2013.09.056

20. Kateeb , A. Next-generation wireless sensor networks infrastructure development for monitoring applica­tions. Procedia Computer Sci. , 2011 , 5 , 749–753.
http://dx.doi.org/10.1016/j.procs.2011.07.099

21. Hick , W. E. On the rate of gain of information. Quart. J. Exp. Psychol. , 1952 , 4 , 11–36.
http://dx.doi.org/10.1080/17470215208416600

22. Hyman , R. Stimulus information as a determinant of reaction time. J. Exp. Psychol. , 1953 , 45 , 188–196.
http://dx.doi.org/10.1037/h0056940

23. Fitts , P. M. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. , 1954 , 49 , 389–391.
http://dx.doi.org/10.1037/h0055392

24. MacKenzie , I. S. Fitts’ law as a research and design tool in human–computer interaction. Human–Computer Inter­action , 1992 , 7 , 91–139.
http://dx.doi.org/10.1207/s15327051hci0701_3

25. Shneiderman , B. and Plaisant , C. Designing the User Interface: Strategies for Effective Human–Computer Interaction (4th ed.). Addison-Wesley , Boston , 2004.

26. Ullman , L. PHP and MySQL for Dynamic Web Sites: Visual QuickPro Guide (4th ed.). Peachipt Press , 2011.

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December