ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Trophic interactions between native and alien palaemonid prawns and an alien gammarid in a brackish water ecosystem; pp. 518–524
PDF | doi: 10.3176/proc.2015.4.06

Authors
Ivan Kuprijanov, Jonne Kotta, Velda Lauringson, Kristjan Herkül
Abstract

Macroalgae are an important habitat for small mobile invertebrates such as gammarid amphipods and palaemonid prawns. Gammarid amphipods are important grazers of micro- and macroalgae whereas palaemonid prawns are feeding on macroalgae and small aquatic invertebrates including gammarids. Recently the invasive palaemonid prawn Palaemon elegans established in the Baltic Sea. As P. elegans occurs within the same habitats as the native Palaemon adspersus, it is expected that this invasion modifies the existing trophic interactions. To address this question, we experimentally investigated the feeding of the native P. adspersus and the invasive P. elegans on the benthic macroalga Cladophora glomerata and on the invasive gammarid amphipod Gammarus tigrinus. In the course of the experiment neither G. tigrinus nor Palaemon spp. had effects on filamentous macroalgae. The presence of prawns drastically increased the mortality of amphipods with no difference in the feeding efficiency between the two prawn species. To conclude, the alien prawn does not add an extra function to the trophic system of the coastal ecosystem of the Baltic Sea. Nevertheless, due to its progressively increasing densities and wide habitat range, P. elegans is expected to exert stronger predation pressure on gammarid amphipods as compared to P. adspersus alone.

References

 

Berglund, A. 1980. Niche differentiation between two littoral prawns in Gullmar Fjord, Sweden: Palaemon adspersus and P. squilla. Ecography, 3, 111–115.
http://dx.doi.org/10.1111/j.1600-0587.1980.tb00716.x

Berglund, A. and Bengtsson, J. 1981. Biotic and abiotic factors determining the distribution of two prawn species: Palaemon adspersus and P. squilla. Oecologia, 49, 300–304.
http://dx.doi.org/10.1007/BF00347589

Carpenter, S. R., Kitchell, J. F., and Hodgson, J. R. 1985. Cascading trophic interactions and lake productivity. BioScience, 35, 634–639.
http://dx.doi.org/10.2307/1309989

Chapin, F. S. III, Walker, B. H., Hobbs, R. J., Hooper, D. U., Lawton, J. H., Sala, O. E., and Tilman, D. 1997. Biotic control over the functioning of ecosystems. Science, 277, 500–504.
http://dx.doi.org/10.1126/science.277.5325.500

Elner, R. W. 1980. The influence of temperature, sex and chela size in the foraging strategy of the shore crab, Carcinus maenas (L.). Mar. Behav. Physiol., 7, 15–24.
http://dx.doi.org/10.1080/10236248009386968

Eriksson, B. K., Ljungren, L., Sandström, A., Johansson, G., Mattila, J., Rubach, A., et al. 2009. Declines in pre­datory fish promote bloom-forming macroalgae. Ecol. Appl., 19, 1975–1988.
http://dx.doi.org/10.1890/08-0964.1

Ezhova, E., Źmudziński, L., and Maciejewska, K. 2005. Long-term trends in the macrozoobenthos of the Vistula Lagoon, southern Baltic Sea. Species composition and biomass distribution. Bull. Sea Fisheries Inst., 1, 54–73.

Flecker, A. S. and Townsend, C. R. 1994. Community-wide consequences of trout introduction in New Zealand streams. Ecol. Appl., 4, 798–807.
http://dx.doi.org/10.2307/1942009

Frank, K. T., Petrie, B., and Shackell, N. L. 2007. The ups and downs of trophic control in continental shelf eco­systems. Trends Ecol. Evol., 22, 236–242.
http://dx.doi.org/10.1016/j.tree.2007.03.002

Grabowski, G. 2006. Rapid colonization of the Polish Baltic coast by an Atlantic palaemonid shrimp Palaemon elegans Rathke, 1837. Aquatic Invasions, 1, 116–123.
http://dx.doi.org/10.3391/ai.2006.1.3.3

Grosholz, E. D., Ruiz, G. M., Dean, C. A., Shirley, K. A., Maron, J. L., and Connors, P. G. 2000. The impacts of a nonindigenous marine predator in a California bay. Ecology, 81, 1206–1224.
http://dx.doi.org/10.1890/0012-9658(2000)081[1206:TIOANM]2.0.CO;2

Gruszka, P. and Więcaszek, B. 2011. Palaemon elegans Rathke, 1837 in the food of Baltic cod (Gadus morhua callarias L., 1758) from the Gulf of Gdańsk. Mar. Biol. Res., 7, 100–105.
http://dx.doi.org/10.1080/17451001003660285

Hartnoll, R. G. and Salama, A. J. 1992. The effect of protein source on the growth of the prawn Palaemon elegans Rathke, 1837 (Decapoda, Caridea). Crustaceana, 63, 81–90.
http://dx.doi.org/10.1163/156854092X00307

Hunt, G. L. Jr. and McKinnell, S. 2006. Interplay between top-down, bottom-up, and wasp-waist control in marine ecosystems. Prog. Oceanogr., 68, 115–124.
http://dx.doi.org/10.1016/j.pocean.2006.02.008

Janas, U. and Barańska, A. 2008. What is the diet of Palaemon elegans Rathke, 1837 (Crustacea, Decapoda), a non-indigenous species in the Gulf of Gdańsk (southern Baltic Sea)? Oceanologia, 50, 222–237.

Janas, U. and Bruska, O. 2010. Energy values and energy resources of two prawns in Baltic coastal waters: the indigenous Palaemon adspersus and the non-indigenous Palaemon elegans. Oceanologia, 52, 281–297.
http://dx.doi.org/10.5697/oc.52-2.281

Janas, U. and Mańkucka, A. 2010. Body size and reproductive traits of Palaemon elegans Rathke, 1837 (Crustacea, Decapoda), a recent colonizer of the Baltic Sea. Oceanol. Hydrobiol. Stud., 39, 3–24.
http://dx.doi.org/10.2478/v10009-010-0016-6

Janas, U., Piłka, M., and Lipińska, D. 2013. Temperature and salinity requirements of Palaemon adspersus Rathke, 1837 and Palaemon elegans Rathke, 1837. Do they explain the occurrence and expansion of prawns in the Baltic Sea? Mar. Biol. Res., 9, 293–300.
http://dx.doi.org/10.1080/17451000.2012.739699

Jänes, H., Kotta, J., and Herkül, K. 2015. High fecundity and predation pressure of the invasive Gammarus tigrinus cause decline of indigenous gammarids. Estuar. Coast. Shelf S., in press.
http://dx.doi.org/10.1016/j.ecss.2015.05.014

Jephson, T., Nyström, P., Moksnes, P.-O., and Baden, S. P. 2008. Trophic interactions in Zostera marina beds along the Swedish coast. Mar. Ecol. Prog. Ser., 369, 63–76.
http://dx.doi.org/10.3354/meps07646

Katajisto, T., Kotta, J., Lehtiniemi, M., Malavin, S. A., and Panov, V. E. 2013. Palaemon elegans Rathke, 1837 (Caridea: Palaemonoidea: Palaemonidae) established in the Gulf of Finland, the north-eastern Baltic Sea. BioInvasions Records, 2, 125–132.
http://dx.doi.org/10.3391/bir.2013.2.2.05

Korpinen, S., Jormalainen, V., and Honkanen, T. 2007. Bottom-up and cascading top-down control of macroalgae along a depth gradient. J. Exp. Mar. Biol. Ecol., 343, 52–63.
http://dx.doi.org/10.1016/j.jembe.2006.11.012

Kotta, J., Orav-Kotta, H., and Herkül, K. 2010. Separate and combined effects of habitat-specific fish predation on the survival of invasive and native gammarids. J. Sea Res., 64, 369–372.
http://dx.doi.org/10.1016/j.seares.2010.05.006

Kuprijanov, I. and Kotta, J. 2013. First evidence on the epiphytic macroalga Pylaiella littoralis on the prawn Palaemon adspersus. Estonian J. Ecol., 62, 287–291.
http://dx.doi.org/10.3176/eco.2013.4.05

Lauringson, V. and Kotta, J. 2006. Influence of the thin drift algal mats on the distribution of macrozoobenthos in Kõiguste Bay, NE Baltic Sea. Hydrobiologia, 554, 97–105.
http://dx.doi.org/10.1007/s10750-005-1009-4

Lesutienė, J., Gasiūnaitė, Z., Strikaitytė, R., and Žilienė, R. 2014. Trophic position and basal energy sources of the invasive prawn Palaemon elegans in the exposed littoral of the SE Baltic Sea. Aquatic Invasions, 9, 37–45.
http://dx.doi.org/10.3391/ai.2014.9.1.03

Long, Z. T., Bruno, J. F., and Duffy, J. 2011. Food chain length and omnivory determine the stability of a marine subtidal food web. J. Anim. Ecol., 80, 586–594.
http://dx.doi.org/10.1111/j.1365-2656.2010.01800.x

MacArthur, R. and Levins, R. 1967. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat., 101, 377–385.
http://dx.doi.org/10.1086/282505

Mariappan, P., Balasundaram, C., and Schmitz, B. 2000. Decapod crustacean chelipeds: an overview. J. Bio­science, 25, 301–313.
http://dx.doi.org/10.1007/BF02703939

Moksnes, P. O., Gullström, M., Tryman, K., and Baden, S. 2008. Trophic cascades in a temperate seagrass community. Oikos, 117, 763–777.
http://dx.doi.org/10.1111/j.0030-1299.2008.16521.x

Möller, P., Pihl, L., and Rosenberg, R. 1985. Benthic faunal energy flow and biological interaction in some shallow marine soft bottom habitats. Mar. Ecol. Prog. Ser., 27, 109–121.
http://dx.doi.org/10.3354/meps027109

Persson, M., Andersson, S., Baden, S., and Moksnes, P. O. 2008. Trophic role of the omnivorous grass shrimp Palaemon elegans in a Swedish eelgrass system. Mar. Ecol. Prog. Ser., 371, 203–212.
http://dx.doi.org/10.3354/meps07674

Pihl, L. 1982. Food intake of young cod and flounder in a shallow bay on the Swedish west coast. Neth. J. Sea Res., 15, 419–432.
http://dx.doi.org/10.1016/0077-7579(82)90068-0

Pinnegar, J. K., Polunin, N. V. C., Francour, P., Badala­menti, F., Chemello, R., Harmelin-Vivien, M. L., et al. 2000. Trophic cascades in benthic marine ecosystems: lessons for fisheries and protected-area management. Environ. Conserv., 27, 179–200.
http://dx.doi.org/10.1017/S0376892900000205

Reuschel, S., Cuesta, J. A., and Schubart, C. D. 2010. Marine biogeographic boundaries and human introduction along the European coast revealed by phylogeography of the prawn Palaemon elegans. Mol. Phylogenet. Evol., 55, 765–775.
http://dx.doi.org/10.1016/j.ympev.2010.03.021

Sareyka, J., Kraufvelin, P., Lenz, M., Lindström, M., Tollrian, R., and Wahl, M. 2011. Differences in stress tolerance and brood size between a non-indigenous and an indigenous gammarid in the northern Baltic Sea. Mar. Biol., 158, 2001–2008.
http://dx.doi.org/10.1007/s00227-011-1708-5

Scheffer, M., Carpenter, S., and Young, B. D. 2005. Cascad­ing effects of overfishing marine systems. Trends Ecol. Evol., 20, 579–581.
http://dx.doi.org/10.1016/j.tree.2005.08.018

Schmitz, O. J. 2007. Predator diversity and trophic inter­actions. Ecology, 88, 2415–2426.
http://dx.doi.org/10.1890/06-0937.1

Seed, R. and Hughes, R. N. 1995. Criteria for prey size-selec­tion in molluscivorous crabs with contrasting claw morphologies. J. Exp. Mar. Biol. Ecol., 193, 177–195.
http://dx.doi.org/10.1016/0022-0981(95)00117-4

Sieben, K., Ljunggren, L., Bergström, U., and Eriksson, B. K. 2011. A meso-predator release of stickleback promotes recruitment of macroalgae in the Baltic Sea. J. Exp. Mar. Biol. Ecol., 397, 79–84.
http://dx.doi.org/10.1016/j.jembe.2010.11.020

Smaldon, G. 1979. British coastal shrimps and prawns: keys and notes for the identification of the species. In Synopses of the British Fauna (New Series), p. 126. Academical Press, London.

Speckman, S. G., Piatt, J. F., Minte-Vera, C. V., and Parrish, J. K. 2005. Parallel structure among environ­mental gradients and three trophic levels in a subarctic estuary. Prog. Oceanogr., 66, 25–65.
http://dx.doi.org/10.1016/j.pocean.2005.04.001

Taylor, A. C. and Spicer, J. I. 1987. Metabolic responses of the prawns Palaemon elegans and P. serratus (Crustacea: Decapoda) to acute hypoxia and anoxia. Mar. Biol., 95, 521–530.
http://dx.doi.org/10.1007/BF00393095

Weis, J. S. 2011. Invasion and predation in aquatic eco­systems. Current Zoology, 57, 613–624.

Wernberg, T., Thomsen, M. S., and Kotta, J. 2013. Complex plant–herbivore–predator interactions in a brackish water seaweed habitat. J. Exp. Mar. Biol. Ecol., 449, 51–56.
http://dx.doi.org/10.1016/j.jembe.2013.08.014

Worm, B. and Myers, R. A. 2003. Meta-analysis of cod–shrimp interactions reveals top-down control in oceanic food webs. Ecology, 84, 162–173.
http://dx.doi.org/10.1890/0012-9658(2003)084[0162:MAOCSI]2.0.CO;2

Yamada, S. B. and Boulding, E. G. 1998. Claw morphology, prey size selection and foraging efficiency in generalist and specialist shell-breaking crabs. J. Exp. Mar. Biol. Ecol., 220, 191–211.
http://dx.doi.org/10.1016/S0022-0981(97)00122-6

 

Back to Issue