headerpos: 9513
 
 
  Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Oil Shale

ISSN 1736-7492 (electronic)  ISSN 0208-189X (print)
Published since 1984

Publisher
Journal Information
» Editorial Policy
» Editorial Board
Extra
Guidelines for Authors
» For Authors
» Instructions to Authors
» Copyright Transfer Form
Guidelines for Reviewers
» For Reviewers
» Review Form
Subscription Information
Support & Contact
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 32, Issue 4
Vol. 32, Issue 3
Vol. 32, Issue 2
Vol. 32, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues
» Back issues (full texts)
  in Google
Publisher
» Other journals
» Staff

MICROWAVE-ASSISTED SOLVENT EXTRACTION OF SHALE OIL FROM JORDANIAN OIL SHALE; pp. 240–251

(Full article in PDF format) doi: 10.3176/oil.2015.3.04


Authors

SAMER I. AL-GHARABLI, MOHAMMED O. J. AZZAM, MOHAMMAD AL-ADDOUS

Abstract

Oil shale as an alternative to oil is considered a major possible source of energy in Jordan which has an estimated 50 billion tons of geo­logical proven reserves that are widely distributed all over the country. Many methods have been used for extracting shale oil from oil shale. This investi­ga­tion suggests the application of a novel technique, namely micro­wave-assisted extraction. Several solvents were tested for extractive capacity at different temperatures (50 to 140 °C) by the microwave irradiation of the investigated oil shale. The extraction results showed that all the solvents except hexane followed a sigmoid behaviour. Methanol exhibited the highest extractive capacity of about 23% of shale oil. Several particle sizes in the range of 94–910 µm were examined and the results indicated that shale oil extraction is not diffusion controlled. The dynamic effect of extraction was also considered and found to have a very little effect after 10 minutes of irradiation.

Keywords

extraction, microwave, oil shale, shale oil, solvent.

References

  1. Hamarneh , Y. Oil Shale Resources Development in Jordan. Natural Resources Authority , Amman , Jordan , 1998. Revised and updated by J. Alali and S. Sawaqed , 2006.

  2. Arro , H. , Prikk , A. , Pihu , T. Calculation of qualitative and quantitative com­position of Estonian oil shale and its combustion products. Part 1. Calculation on the basis of heating value. Fuel , 2003 , 82(18) , 2179–2195.
http://dx.doi.org/10.1016/S0016-2361(03)00125-X

  3. Altun , N. E. , Hicyilmaz , C. , Hwang , J.-Y. , Suat Bağci , A. , Kök , M. V. Oil shales in the world and Turkey; reserves , current situation and future prospects: a review. Oil Shale , 2006 , 23(3) , 211–227.

  4. Bussell , I. S (Ed.). Oil Shale Developments , Nova Science Publishers , Inc. , New York , 2009.

  5. Nazzal , J. M. Influence of heating rate on the pyrolysis of Jordan oil shale. J. Anal. Appl. Pyrol. , 2002 , 62(2) , 225–238.
http://dx.doi.org/10.1016/S0165-2370(01)00119-X

  6. Han , X. X. , Jiang , X. M. , Cui , Z. G. Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale. Appl. Energ. , 2009 , 86(11) , 2381–2385.
http://dx.doi.org/10.1016/j.apenergy.2009.03.014

  7. Al-Harahsheh , A. , Al-Ayed , O. , Al-Harahsheh , M. , Abu-El-Halawah , R. Heat­ing rate effect on fractional yield and composition of oil retorted from El-lajjun oil shale. J. Anal. Appl. Pyrol. , 2010 , 89(2) , 239–243.
http://dx.doi.org/10.1016/j.jaap.2010.08.009

  8. Wang , Z. , Deng , S. , Gu , Q. , Zhang , Y. , Cui , X. , Wang , H. Pyrolysis kinetic study of Huadian oil shale , spent oil shale and their mixtures by thermo­gravimetric analysis. Fuel Process. Technol. , 2013 , 110 , 103–108.
http://dx.doi.org/10.1016/j.fuproc.2012.12.001

  9. Johannes , I. , Tiikma , L. , Luik , H. Synergy in co-pyrolysis of oil shale and pine sawdust in autoclaves. J. Anal. Appl. Pyrol. , 2013 , 104 , 341–352.
http://dx.doi.org/10.1016/j.jaap.2013.06.015

10. Wang , S. , Jiang , X. , Han , X. , Tong , J. Effect of retorting temperature on product yield and characteristics of non-condensable gases and shale oil obtained by retorting Huadian oil shales. Fuel Process. Technol. , 2014 , 121 , 9–15.
http://dx.doi.org/10.1016/j.fuproc.2014.01.005

11. Torrente , M. C. , Galan , M. A. Extraction of kerogen from oil shale (Puertollano , Spain) with supercritical toluene and methanol mixtures. Ind. Eng. Chem. Res. , 2011 , 50(3) , 1730–1738.
http://dx.doi.org/10.1021/ie1004509

12. Deng , S. , Wang , Z. , Gu , Q. , Meng , F. , Li , J. , Wang , H. Extracting hydrocarbons from Huadian oil shale by sub-critical water. Fuel Process. Technol. , 2011 , 92(5) , 1062–1067.
http://dx.doi.org/10.1016/j.fuproc.2011.01.001

13. Abourriche , A. , Oumam , M. , Hannache , H. , Adil , A. , Pailler , R. , Naslain , R. , Birot , M. , Pillot , J.-P. Effect of toluene proportion on the yield and composition of oils obtained by supercritical extraction of Moroccan oil shale. J. Supercrit. Fluid. , 2009 , 51(1) , 24–28.
http://dx.doi.org/10.1016/j.supflu.2009.07.003

14. Hruljova , J. , Savest , N. , Oja , V. , Suuberg , E. M. Kukersite oil shale kerogen solvent swelling in binary mixtures. Fuel , 2013 , 105 , 77–82.
http://dx.doi.org/10.1016/j.fuel.2012.06.085

15. Abourriche , A. K. , Oumam , M. , Hannache , H. , Birot , M. , Abouliatim , Y. , Benhammou , A. , El Hafiane , Y. , Abourriche , A. M. , Pailler , R. , Naslain , R. Comparative studies on the yield and quality of oils extracted from Moroccan oil shale. J. Supercrit. Fluid. , 2013 , 84 , 98–104.
http://dx.doi.org/10.1016/j.supflu.2013.09.018

16. Wei , L. , Mastalerz , M. , Schimmelmann , A. , Chen , Y. Influence of Soxhlet-extractable bitumen and oil on porosity in thermally maturing organic-rich shales. Int. J. Coal Geol. , 2014 , 132 , 38–50.
http://dx.doi.org/10.1016/j.coal.2014.08.003

17. Haddadin , M. S. Y. , Abou Arqoub , A. A. , Abu Reesh , I. , Haddadin , J. Kinetics of hydrocarbon extraction from oil shale using biosurfactant producing bacteria. Energ. Convers. Manage. , 2009 , 50(4) , 983–990.
http://dx.doi.org/10.1016/j.enconman.2008.12.015

18. El harfi , K. , Mokhlisse , A. , Chanâa , M. B. , Outzourhit , A. Pyrolysis of the Moroccan (Tarfaya) oil shales under microwave irradiation. Fuel , 2000 , 79(7) , 733–742.
http://dx.doi.org/10.1016/S0016-2361(99)00209-4

19. Bradhurst , D. H. , Worner , H. K. Evaluation of oil produced from the microwave retorting of Australian shales. Fuel , 1996 , 75(3) , 285–288.
http://dx.doi.org/10.1016/0016-2361(95)00232-4

20. Mutyala , S. , Fairbridge , C. , Jocelyn Paré , J. R. , Bélanger , J. M. R. , Ng , S. , Hawkins , R. Microwave applications to oil sands and petroleum: A review. Fuel Process. Technol. , 2010 , 91(2) , 127–135.
http://dx.doi.org/10.1016/j.fuproc.2009.09.009

21. Dumbaugh , W. H. , Lawless , W. N. , Malmendier , J. W. , Wexell , D. R. Extrac­tion of oil from oil shale and tar sand. Canadian Patent , CA 1 ,108 ,081 , Sept. 1 , 1981.

22. De la Hoz , A. , Díaz-Ortiz , Á. , Moreno , A. Microwaves in organic synthesis: Thermal and non-thermal microwave effects. Chem. Soc. Rev. , 2005 , 34 , 164–178.
http://dx.doi.org/10.1039/b411438h

23. Lidström , P. , Tierney , J. , Wathey , B. , Westman , J. Microwave assisted organic synthesis – a review. Tetrahedron , 2001 , 57(45) , 9225–9283.
http://dx.doi.org/10.1016/S0040-4020(01)00906-1

24. Balint , V. , Pinter , A. , Mika , G. Process for the recovery of shale oil , heavy oil , kerogen or tar from their natural sources. U.S. Patent 4 ,419 ,214 , Dec. 6 , 1983.

25. Raytheon Company. Oil Extraction from Shale Reserves. Raytheon Technology Today. 2009 , 1 , 10.

26. Al-Harahsheh , A. , Al-Otoom , A. Y. , Shawabkeh , R. A. Sulfur distribution in the oil fraction obtained by thermal cracking of Jordanian El-Lajjun oil shale. Energy , 2005 , 30(15) , 2784–2795.

27. Savest , N. , Hruljova , J. , Oja , V. Characterization of thermally pretreated kukersite oil shale using the solvent-swelling technique. Energ. Fuel. , 2009 , 23(12) , 5972–5977.
http://dx.doi.org/10.1021/ef900667t

28. Thompson , W. R. , Prien , C. H. Thermal extraction and solution of oil shale kerogen. Ind. Eng. Chem. , 1958 , 50 , 359–364.
http://dx.doi.org/10.1021/ie50579a037

29. Moran , M. J. , Shapiro , H. N. Fundamentals of Engineering Thermodynamics , 5th ed. John Wiley & Sons Inc. , 2006.

30. Mo , Y. , Dang , L. , Wei , H. Solubility of α-form and β-form of L-glutamic acid in different aqueous solvent mixtures. Fluid Phase Equilibr. , 2011 , 300(1–2) , 105–109.
http://dx.doi.org/10.1016/j.fluid.2010.10.020

 
Back

Current Issue: Vol. 36, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December