headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

On mechanical aspects of nerve pulse propagation and the Boussinesq paradigm; pp. 331–337

(Full article in PDF format) doi: 10.3176/proc.2015.3S.02


Authors

Tanel Peets, Kert Tamm

Abstract

The dynamic behaviour of the Boussinesq-type equation governing longitudinal wave propagation in cylindrical biomembranes is analysed by making use of the pseudospectral method. It is shown how the dispersion type has a significant effect on the solution. The effects of other parameters are also considered.

Keywords

biomembranes, Boussinesq paradigm, pseudospectral method, dispersion.

References

  1. Abramson , H. N. , Plass , H. J. , and Ripperger , E. A. Stress wave propagation in rods and beams. In Advances in Applied Mechanics , Vol. 5 (Dryden , H. and von Karman , T. , eds). Academic Press , New York , 1958 , 111–194.
http://dx.doi.org/10.1016/s0065-2156(08)70019-x

  2. Engelbrecht , J. , Salupere , A. , and Tamm , K. Waves in microstructured solids and the Boussinesq paradigm. Wave Motion , 2011 , 48(8) , 717–726.
http://dx.doi.org/10.1016/j.wavemoti.2011.04.001

  3. Maugin , G. A. Nonlinear Waves in Elastic Crystals. Oxford University Press , Oxford , 1999.

  4. Heimburg , T. and Jackson , A. D. On soliton propagation in biomembranes and nerves. P. Natl. Acad. Sci. USA , 2005 , 102(28) , 9790–9795.
http://dx.doi.org/10.1073/pnas.0503823102

  5. Engelbrecht , J. , Tamm , K. , and Peets , T. On mathematical modelling of solitary pulses in cylindrical biomembranes. Biomech. Model. Mechanobiol. , 2015 , 14(1) , 159–167.
http://dx.doi.org/10.1007/s10237-014-0596-2

  6. Tamm , K. and Peets , T. On solitary waves in case of amplitude-dependent nonlinearity. Chaos Soliton. Fract. , 2015 , 73 , 108–114.
http://dx.doi.org/10.1016/j.chaos.2015.01.013

  7. Maugin , G. A. and Christov , C. I. Nonlinear duality between elastic waves and quasi-particles. In Selected Topics in Nonlinear Wave Mechanics (Christov , C. I. and Guran , A. , eds). Birkhäuser , Boston , MA , 2002 , 101–145.
http://dx.doi.org/10.1007/978-1-4612-0095-6_4

  8. Christov , C. I. , Maugin , G. A. , and Porubov , A. V. On Boussinesq’s paradigm in nonlinear wave propagation. C. R. Mécanique , 2007 , 335(9–10) , 521–535.
http://dx.doi.org/10.1016/j.crme.2007.08.006

  9. Mueller , J. K. and Tyler , W. J. A quantitative overview of biophysical forces impinging on neural function. Phys. Biol. , 2014 , 11(5) , 051001.
http://dx.doi.org/10.1088/1478-3975/11/5/051001

10. Iwasa , K. , Tasaki , I. , and Gibbons , R. Swelling of nerve fibers associated with action potentials. Science , 1980 , 210(4467) , 338–339.
http://dx.doi.org/10.1126/science.7423196

11. Tasaki , I. A macromolecular approach to excitation phenomena: mechanical and thermal changes in nerve during excitation. Physiol. Chem. Phys. Med. NMR , 1988 , 20 , 251–268.

12. Hodgkin , A. L. and Huxley , A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. , 1952 , 117 , 500–544.
http://dx.doi.org/10.1113/jphysiol.1952.sp004764

13. Nagumo , J. , Arimoto , S. , and Yoshizawa , S. An active pulse transmission line simulating nerve axon. Proc. IRE , 1962 , 50(10) , 2061–2070.
http://dx.doi.org/10.1109/jrproc.1962.288235

14. Engelbrecht , J. On theory of pulse transmission in a nerve fibre. P. Roy. Soc. Lond. A Mat. , 1981 , 375(1761) , 195–209.

15. Tasaki , I. , Kusano , K. , and Byrne , P. M. Rapid mechanical and thermal changes in the garfish olfactory nerve associated with a propagated impulse. Biophys. J. , 1989 , 55(6) , 1033–1040.
http://dx.doi.org/10.1016/S0006-3495(89)82902-9

16. Heimburg , T. and Jackson , A. D. On the action potential as a propagating density pulse and the role of anesthetics. Biophys. Rev. Lett. , 2007 , 2 , 57–78.
http://dx.doi.org/10.1142/S179304800700043X

17. Vargas , E. V. , Ludu , A. , Hustert , R. , Gumrich , P. , Jackson , A. D. , and Heimburg , T. Periodic solutions and refractory periods in the soliton theory for nerves and the locust femoral nerve. Biophys. Chem. , 2011 , 153(2–3) , 159–167.
http://dx.doi.org/10.1016/j.bpc.2010.11.001

18. Porubov , A. V. and Maugin , G. A. Longitudinal strain solitary waves in presence of cubic non-linearity. Int. J. Nonlinear Mech. , 2005 , 40 , 1041–1048.
http://dx.doi.org/10.1016/j.ijnonlinmec.2005.03.001

19. Slyunyaev , A. V. and Pelinovski , E. N. Dynamics of large-amplitude solitons. J. Exp. Theor. Phys. , 1999 , 89(1) , 173–181.
http://dx.doi.org/10.1134/1.558966

20. Salupere , A. The pseudospectral method and discrete spectral analysis. In Applied Wave Mathematics (Quak , E. and Soomere , T. , eds). Springer , Berlin , 2009 , 301–334.
http://dx.doi.org/10.1007/978-3-642-00585-5_16

21. Salupere , A. , Engelbrecht , J. , and Maugin , G. A. Solitonic structures in KdV-based higher-order systems. Wave Motion , 2001 , 34(1) , 51–61.
http://dx.doi.org/10.1016/S0165-2125(01)00069-5

22. Bona , J. L. and Sachs , R. L. Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation. Commun. Math. Phys. , 1988 , 118 , 15–29.
http://dx.doi.org/10.1007/BF01218475

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December