headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Contribution of wave set-up into the total water level in the Tallinn area; pp. 338–348

(Full article in PDF format) doi: 10.3176/proc.2015.3S.03


Authors

Katri Pindsoo, Tarmo Soomere

Abstract

Wave-induced set-up is a nonlinear phenomenon driven by the release of momentum from breaking waves. It may cause a systematic rise in the water level in certain coastal segments. We address the contribution of wave set-up into the formation of extreme water levels at the waterfront in the Tallinn area of the north-eastern Baltic Sea. The parameters of set-up are evaluated using the wave properties computed for 1981–2014 with a triple-nested WAM model with a horizontal resolution of about 470 m. The offshore water level is extracted from the output of the Rossby Centre Ocean (RCO) model. The maximum set-up may reach 0.7–0.8 m in some coastal sections and the all-time highest measured water level is 1.52–1.55 m in the study area. The high offshore water levels are only infrequently synchronized with extreme set-up events. Wave set-up may contribute to the all-time maximum water level at the shoreline by up to 0.5 m. This contribution considerably varies for different years. The largest contribution from set-up into extreme water levels usually occurs during north-westerly storms.

Keywords

marine coastal hazards, flooding, wave set-up, water level.

References

  1. Alari , V. and Kõuts , T. 2012. Simulating wave–surge interaction in a non-tidal bay during cyclone Gudrun in January 2005. In Proceedings of the IEEE/OES Baltic 2012 International Symposium “Ocean: Past , Pre­sent and Future. Climate Change Research , Ocean Observation & Advanced Technologies for Regional Sustainability ,” May 8–11 , Klaipėda , Lithuania. IEEE Conference Publications , doi: 10.1109/ BALTIC.2012.6249185

  2. Dean , R. G. and Bender , C. J. 2006. Static wave set-up with emphasis on damping effects by vegetation and bottom friction. Coast. Eng. , 53 , 149–165.
http://dx.doi.org/10.1016/j.coastaleng.2005.10.005

  3. Dean , R. G. and Dalrymple , R. A. 1991. Water Wave Mechanics for Engineers and Scientists. World Scientific.
http://dx.doi.org/10.1142/1232

  4. Hall , J. W. , Dawson , R. J. , Barr , S. L. , Batty , M. , Bristow , A. L. , Carney , S. et al. 2010. City-scale integrated assessment of climate impacts , adaptation , and mitigation. In Energy Efficient Cities: Assessment Tools and Benchmarking Practices (Bose , R. K. , ed.). The World Bank , 63–83.

  5. Hallegatte , S. , Green , C. , Nicholls , R. J. , and Corfee-Morlot , J. 2013. Future flood losses in major coastal cities. Nat. Clim. Change , 3(9) , 802–806.
http://dx.doi.org/10.1038/nclimate1979

  6. Hünicke , B. , Zorita , E. , Soomere , T. , Madsen , K. S. , Johansson , M. , and Suursaar , Ü. 2015. Recent change – sea level and wind waves. In The BACC II Author Team , Second Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies , Springer , 155–185.
http://dx.doi.org/10.1007/978-3-319-16006-1_9

  7. Jaagus , J. 2009. Long-term changes in frequencies of wind directions on the western coast of Estonia. In Climate Change Impact on Estonian Coasts (Kont , A. and Tõnisson , H. , eds). Publication 11/2009. Institute of Ecology , Tallinn University , Tallinn , 11–24.

  8. Keevallik , S. and Soomere , T. 2010. Towards quantifying variations in wind parameters across the Gulf of Finland. Estonian J. Earth Sci. , 59 , 288–297.
http://dx.doi.org/10.3176/earth.2010.4.05

  9. Komen , G. J. , Cavaleri , L. , Donelan , M. , Hasselmann , K. , Hasselmann , S. , and Janssen , P. A. E. M. 1994. Dynamics and Modelling of Ocean Waves. Cambridge University Press , Cambridge.
http://dx.doi.org/10.1017/CBO9780511628955

10. Lehmann , A. , Getzlaff , K. , and Harlaß , J. 2011. Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Climate Res. , 46 , 185−196.
http://dx.doi.org/10.3354/cr00876

11. Leppäranta , M. 2012. Ice season in the Baltic Sea and its climatic variability. In From the Earth’s Core to Outer Space. Lecture Notes Earth Sci. , 137 , 139–149.
http://dx.doi.org/10.1007/978-3-642-25550-2_9

12. Leppäranta , M. and Myrberg , K. 2009. Physical Oceanography of the Baltic Sea. Springer , Berlin.
http://dx.doi.org/10.1007/978-3-540-79703-6

13. Longuet-Higgins , M. S. and Stewart , R. W. 1964. Radiation stresses in water waves: a physical discussion with applications. Deep-Sea Res. , 11 , 529–562.
http://dx.doi.org/10.1016/0011-7471(64)90001-4

14. Meier , H. E. M. 2001. On the parameterization of mixing in three-dimensional Baltic Sea models. J. Geophys. Res.–Oceans , 106 , C30997–C31016.
http://dx.doi.org/10.1029/2000JC000631

15. Meier , H. E. M. and Höglund , A. 2013. Studying the Baltic Sea circulation with Eulerian tracers. In Pre­ventive Methods for Coastal Protection (Soomere , T. and Quak , E. , eds). Springer , 101–130.
http://dx.doi.org/10.1007/978-3-319-00440-2_4

16. Meier , H. E. M. , Döscher , R. , and Faxén , T. 2003. A multiprocessor coupled ice–ocean model for the Baltic Sea: application to salt inflow. J. Geophys. Res.–Oceans , 108(C8) , 32–73.
http://dx.doi.org/10.1029/2000JC000521

17. Meier , H. E. M. , Broman , B. , and Kjellström , E. 2004. Simulated sea level in past and future climates of the Baltic Sea. Climate Res. , 27 , 59–75.
http://dx.doi.org/10.3354/cr027059

18. Pettersson , H , Kahma , K. K. , and Tuomi , L. 2010 Predicting wave directions in a narrow bay. J. Phys. Oceanogr. , 40(1) , 155–169.
http://dx.doi.org/10.1175/2009JPO4220.1

19. Pettersson , H. , Lindow , H. , and Brüning , T. 2013. Wave climate in the Baltic Sea 2012. HELCOM Baltic Sea Environment Fact Sheets 2012. http://helcom.fi/baltic-sea-trends/environment-fact-sheets/hydrography/ wave-climate-in-the-baltic-sea/ (accessed 28.02.2015).

20. Rutgersson , A. , Jaagus , J. , Schenk , F. , and Stendel , M. 2014. Observed changes and variability of atmo­spheric parameters in the Baltic Sea region during the last 200 years. Climate Res. , 61 , 177–190.
http://dx.doi.org/10.3354/cr01244

21. Samuelsson , P. , Jones , C. G. , Willén , U. , Ullerstig , A. , Gollovik , S. , Hansson , U. et al. 2011. The Rossby Centre Regional Climate Model RCA3: model description and performance. Tellus A , 63 , 4–23.
http://dx.doi.org/10.1111/j.1600-0870.2010.00478.x

22. Schmager , G. , Fröhle , P. , Schrader , D. , Weisse , R. , and Müller-Navarra , S. 2008. Sea state , tides. In State and Evolution of the Baltic Sea 1952–2005 (Feistel , R. , Nausch , G. , and Wasmund , N. , eds). Wiley , Hoboken , NJ , 143–198.
http://dx.doi.org/10.1002/9780470283134.ch7

23. Sooäär , J. and Jaagus , J. 2007. Long-term changes in the sea ice regime in the Baltic Sea near the Estonian coast. Proc. Estonian Acad. Sci. Eng. , 13 , 189–200.

24. Soomere , T. 2005. Wind wave statistics in Tallinn Bay. Boreal Environ. Res. , 10 , 103–118.

25. Soomere , T. , Behrens , A. , Tuomi , L. , and Nielsen , J.W. 2008. Wave conditions in the Baltic Proper and in the Gulf of Finland during windstorm Gudrun. Nat. Hazards Earth Syst. Sci. , 8 , 37–46.
http://dx.doi.org/10.5194/nhess-8-37-2008

26. Soomere , T. , Myrberg , K. , Leppäranta , M. , and Nekra­sov , A. 2008. The progress in knowledge of physical oceanography of the Gulf of Finland: a review for 1997–2007. Oceanologia , 50(3) , 287–362.

27. Soomere , T. , Viška , M. , and Eelsalu , M. 2013. Spatial variations of wave loads and closure depth along the eastern Baltic Sea coast. Estonian J. Eng. , 19 , 93–109.
http://dx.doi.org/10.3176/eng.2013.2.01

28. Soomere , T. , Pindsoo , K. , Bishop , S. R. , Käärd , A. , and Valdmann , A. 2013. Mapping wave set-up near a complex geometric urban coastline. Nat. Hazards Earth Syst. Sci. , 13 , 3049–3061.
http://dx.doi.org/10.5194/nhess-13-3049-2013

29. Suursaar , Ü. , Kullas , K. , Otsmann , M. , Saaremäe , I. , Kuik , J. , and Merilain , M. 2006. Cyclone Gudrun in January 2005 and modelling its hydrodynamic consequences in the Estonian coastal waters. Boreal Environ. Res. , 11 , 143–159.

30. Suursaar , Ü. , Jaagus , J. , and Tõnisson , H. 2015. How to quantify long-term changes in coastal sea storminess? Estuar. Coast. Shelf S. , 156 , 31–41.
http://dx.doi.org/10.1016/j.ecss.2014.08.001

31. Tuomi , L. , Kahma , K. K. , and Pettersson , H. 2011. Wave hindcast statistics in the seasonally ice-covered Baltic Sea. Boreal Environ. Res. , 16 , 451–472.

32. Tuomi , L. , Kahma , K. K. , and Fortelius , C. 2012. Model­ling fetch-limited wave growth from an irregular shoreline. J. Marine Syst. , 105 , 96–105.
http://dx.doi.org/10.1016/j.jmarsys.2012.06.004

33. Viška , M. and Soomere , T. 2013. Simulated and observed reversals of wave-driven alongshore sediment trans­port at the eastern Baltic Sea coast. Baltica , 26(2) , 145–156.
http://dx.doi.org/10.5200/baltica.2013.26.15

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December