headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Thermodynamic hierarchies of evolution equations; pp. 389–395

(Full article in PDF format) doi: 10.3176/proc.2015.3S.09


Authors

Peter Ván, Robert Kovács, Tamás Fülöp

Abstract

Non-equilibrium thermodynamics with internal variables introduces a natural hierarchical arrangement of evolution equations. Three examples are shown: a hierarchy of linear constitutive equations in thermodynamic rhelogy with a single internal variable, a hierarchy of wave equations in the theory of generalized continua with dual internal variables, and a hierarchical arrangement of the Fourier equation in the theory of heat conduction with current multipliers.

Keywords

multiscale, non-equilibrium thermodynamics, internal variables.

References

  1. Grmela , M. , Lebon , G. , and Dubois , C. Multiscale thermodynamics and mechanics of heat. Phys. Rev. E , 2011 , 83 , 061134.
http://dx.doi.org/10.1103/PhysRevE.83.061134

  2. Liboff , R. L. Kinetic Theory (Classical , Quantum , and Relativistic Descriptions). Prentice Hall , Englewood Cliffs , New Jersey , 1990.

  3. Kluitenberg , G. A. Thermodynamical theory of elasticity and plasticity. Physica , 1962 , 28 , 217–232.
http://dx.doi.org/10.1016/0031-8914(62)90041-1

  4. Verhás , J. Thermodynamics and Rheology. Akadémiai Kiadó and Kluwer Academic Publishers , Budapest , 1997.

  5. Kluitenberg , G. A. and Ciancio , V. On linear dynamical equations of state for isotropic media. Physica A , 1978 , 93 , 273–286.
http://dx.doi.org/10.1016/0378-4371(78)90221-2

  6. Ciancio , V. and Kluitenberg , G. A. On linear dynamical equations of state for isotropic media II: some cases of special interest. Physica A , 1979 , 99 , 592–600.
http://dx.doi.org/10.1016/0378-4371(79)90074-8

  7. Maugin , G. A. and Muschik , W. Thermodynamics with internal variables. Part I. General concepts. J. Non-Equil. Thermody. , 1994 , 19 , 217–249.

  8. Asszonyi , Cs. , Fülöp , T. , and Ván , P. Distinguished rheological models for solids in the framework of a thermodynamical internal variable theory. Continuum Mech. Therm. , 2014. arXiv:1407.0882.
http://dx.doi.org/10.1007/s00161-014-0392-3

  9. Ván , P. , Berezovski , A. , and Engelbrecht , J. Internal variables and dynamic degrees of freedom. J. Non-Equil. Thermody. , 2008 , 33(3) , 235–254. cond-mat/0612491.

10. Berezovski , A. , Engelbrecht , J. , and Berezovski , M. Waves in microstructured solids: a unified viewpoint of modelling. Acta Mech. , 2011 , 220 , 349–363.
http://dx.doi.org/10.1007/s00707-011-0468-0

11. Ván , P. , Papenfuss , C. , and Berezovski , A. Thermodynamic approach to generalized continua. Continuum Mech. Therm. , 2014 , 25(3) , 403–420. Erratum: 421–422 , arXiv:1304.4977.

12. Berezovski , A. , Engelbrecht , J. , and Peets , T. Multiscale modeling of microstructured solids. Mech. Res. Commun. , 2010 , 37(6) , 531–534.
http://dx.doi.org/10.1016/j.mechrescom.2010.07.020

13. Berezovski , A. and Engelbrecht , J. Thermoelastic waves in microstructured solids: dual internal variables approach. Journal of Coupled Systems and Multiscale Dynamics , 2013 , 1(1) , 112–119.
http://dx.doi.org/10.1166/jcsmd.2013.1009

14. Ván , P. and Fülöp , T. Universality in heat conduction theory: weakly nonlocal thermodynamics. Ann. Phys. , 2012 , 524(8) , 470–478. arXiv:1108.5589.
http://dx.doi.org/10.1002/andp.201200042

15. Kovács , R. and Ván , P. Generalized heat conduction in laser flash experiments. International Journal of Heat and Mass Transfer , 2015 , 83 , 613–620.2014. arXiv:1409.0313v2.

16. Nyíri , B. On the entropy current. J. Non-Equil. Thermody. , 1991 , 16 , 179–186.

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December