headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Wave motions along lattices with nonlinear on-site and inter-site potentials. Cooperation and/or competition leading to lattice solitons and/or discrete breathers; pp. 396–404

(Full article in PDF format) doi: 10.3176/proc.2015.3S.10


Authors

Manuel G. Velarde, Alexander P. Chetverikov, Werner Ebeling, Sergey V. Dmitriev, Victor D. Lakhno

Abstract

We consider the wave dynamics of a one-dimensional lattice where both on-site and inter-site vibrations, coupled together, are governed by Morse interactions. We focus attention on the onset of lattice solitons and discrete breathers (DBs, aka intrinsic localized modes, ILM). We show how varying the relative strength of the on-site potential to that of the inter-site potential permits transition from one mode of (travelling or otherwise) localized excitation to the other.

Keywords

lattice soliton, discrete breather, intrinsic localized mode, Morse potential, on-site potential, inter-site potential.

References

  1. Scott , A. C. Nonlinear Science. Emergence and Dynamics of Coherent Structures. Oxford University Press , New York , 1999.

  2. Dauxois , T. and Peyrard , M. Physics of Solitons. Cambridge University Press , Cambridge , 2006 (and references therein).

  3. Lakhno , V. D. and Fialko , N. S. Long-range charge transfer in DNA. Regul. Chaotic Dyn. , 2002 , 7(3) , 299–313.
http://dx.doi.org/10.1070/RD2002v007n03ABEH000212

  4. Yakushevich , L. V. From pendulum to DNA. Biophysics , 2013 , 58(3) , 291–309.
http://dx.doi.org/10.1134/S0006350913030214

  5. Campbell , D. K. , Flach , S. , and Kivshar , Yu. S. Localizing energy through nonlinearity and discreteness. Phys. Today , 2004 , 57(1) , 43–49 (and references therein).
http://dx.doi.org/10.1063/1.1650069

  6. Sievers , A. J. and Takeno , S. Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. , 1988 , 61(8) , 970–973.
http://dx.doi.org/10.1103/PhysRevLett.61.970

  7. Kiselev , S. A. , Bickham , S. R. , and Sievers , A. J. Anharmonic gap modes in a perfect one-dimensional diatomic lattice for standard two-body nearest-neighbor potentials. Phys. Rev. B , 1993 , 48(18) , 13508–13511.
http://dx.doi.org/10.1103/PhysRevB.48.13508

  8. Page , J. B. Asymptotic solutions for localized vibratonial modes in strongly anharmonic periodic systems. Phys. Rev. B , 1990 , 41(11) , 7835–7838.
http://dx.doi.org/10.1103/PhysRevB.41.7835

  9. Tsironis , G. P. If “discrete breathers” is the answer , what is the question? Chaos , 2003 , 13(2) , 657–666.
http://dx.doi.org/10.1063/1.1557234

10. Sanchez-Rey , B. , James , G. , Cuevas , J. , and Archilla , J. F. R. Bright and dark breathers in Fermi-Pasta-Ulam lattices. Phys. Rev. B , 2004 , 70(1) , 014301.
http://dx.doi.org/10.1103/PhysRevB.70.014301

11. Iooss , G. and James , G. Localized waves in nonlinear oscillator chains. Chaos , 2005 , 15(1) , 015113.
http://dx.doi.org/10.1063/1.1836151

12. Aubry , S. Discrete breathers: localization and transfer of energy in discrete Hamiltonian nonlinear systems. Physica D , 2006 , 216(1) , 1–30.
http://dx.doi.org/10.1016/j.physd.2005.12.020

13. Chechin , G. M. , Dmitriev , S. V. , Lobzenko , I. P. , and Ryabov , D. S. Properties of discrete breathers in graphane from ab initio simulations. Phys. Rev. B , 2014 , 90(4) , 045432.
http://dx.doi.org/10.1103/PhysRevB.90.045432

14. Kistanov , A. A. , Dmitriev , S. V. , Chetverikov , A. P. , and Velarde , M. G. Head-on and head-off collisions of discrete breathers in two-dimensional anharmonic crystal lattices. Eur. Phys. J. B , 2014 , 87(9) , 211.
http://dx.doi.org/10.1140/epjb/e2014-50343-6

15. Toda , M. Theory of Nonlinear Lattices , 2nd. ed. Springer-Verlag , Berlin , 1989.
http://dx.doi.org/10.1007/978-3-642-83219-2

16. Nekorkin , V. I. and Velarde , M. G. Synergetic Phenomena in Active Lattices. Patterns , Waves , Solitons , Chaos. Springer , Berlin , 2002.
http://dx.doi.org/10.1007/978-3-642-56053-8

17. Cisneros-Ake , L. , Cruzeiro , L. , and Velarde , M. G. Mobile localized solutions for an electron in lattices with dispersive and non-dispersive phonons. Physica D , 2015 , 306 , 82–93.
http://dx.doi.org/10.1016/j.physd.2015.05.008

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December