headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Excitation of intrinsic localized modes in finite mass-spring chains driven sinusoidally at end; pp. 417–421

(Full article in PDF format) doi: 10.3176/proc.2015.3S.12


Authors

Yosuke Watanabe, Takunobu Nishida, Nobumasa Sugimoto

Abstract

Localized oscillations in finite mass-spring chains, driven sinusoidally at one end with the other fixed, are studied numerically. It is assumed that the restoring force of the spring is given by a piecewise linear function of a relative displacement between neighbouring masses, i.e. a spring constant changes at a threshold of the displacement. Linear damping proportional to the velocity of the mass is taken into account. The mass at one end is forced to be displaced in the direction of the chains at a frequency above the cut-off frequency. It is shown that when the amplitude exceeds the threshold, localized oscillations are excited intermittently at the driving end and propagated down the chain at a constant speed.

Keywords

nonlinear localized oscillations, intrinsic localized modes, discrete breathers, Fermi–Pasta–Ulam chains, piecewise linear approximation.

References

  1. Sievers , A. J. and Takeno , S. Intrinsic localized modes in anharmonic crystals. Phys. Rev. Lett. , 1988 , 61(8) , 970–973.
http://dx.doi.org/10.1103/PhysRevLett.61.970

  2. Aubry , S. Breathers in nonlinear lattices: existence , linear stability and quantization. Physica D , 1997 , 103 , 201–250.
http://dx.doi.org/10.1016/S0167-2789(96)00261-8

  3. Flach , S. and Willis , C. R. Discrete breathers. Phys. Rep. , 1998 , 295 , 181–264.
http://dx.doi.org/10.1016/S0370-1573(97)00068-9

  4. Kivshar , Y. S. and Flach , S. (eds). Focus issue: Nonlinear localized modes: physics and applications. Chaos , 2003 , 13 , 586–799.
http://dx.doi.org/10.1063/1.1577332

  5. Campbell , D. K. , Flach , S. , and Kivshar , Y. S. Localizing energy through nonlinearity and discreteness. Phys. Today , 2004 , 57 , 43–49.
http://dx.doi.org/10.1063/1.1650069

  6. Yoshimura , K. and Doi , Y. Moving discrete breathers in nonlinear lattice: resonance and stability. Wave Motion , 2007 , 45 , 83–99.
http://dx.doi.org/10.1016/j.wavemoti.2007.04.004

  7. Geniet , F. and Leon , J. Energy transmission in the forbidden band gap of a nonlinear chain. Phys. Rev. Lett. , 2002 , 89(13) , 134102.
http://dx.doi.org/10.1103/PhysRevLett.89.134102

  8. Geniet , F. and Leon , J. Nonlinear supratransmission. J. Phys.-Condens. Mat. , 2003 , 15 , 2933–2949.
http://dx.doi.org/10.1088/0953-8984/15/17/341

  9. Spire , A. and Leon , J. Nonlinear absorption in discrete systems. J. Phys. A-Math. Gen. , 2004 , 37 , 9101–9108.
http://dx.doi.org/10.1088/0305-4470/37/39/004

10. Leon , J. Nonlinear supratransmission as a fundamental instability. Phys. Lett. A , 2003 , 319 , 130–136.
http://dx.doi.org/10.1016/j.physleta.2003.10.012

11. Khomeriki , R. , Lepri , S. , and Ruffo , S. Nonlinear supratransmission and bistability in the Fermi-Pasta-Ulam model. Phys. Rev. E , 2004 , 70 , 066626.
http://dx.doi.org/10.1103/PhysRevE.70.066626

12. Sato , M. , Hubbard , B. E. , Sievers , A. J. , Ilic , B. , Czaplewski , D. A. , and Craighead , H. G. Observation of locked intrinsic localized vibrational modes in a micromechanical oscillator array. Phys. Rev. Lett. , 2003 , 90 , 044102.
http://dx.doi.org/10.1103/PhysRevLett.90.044102

13. Kimura , M. and Hikihara , T. Coupled cantilever array with tunable on-site nonlinearity and observation of localized oscillations. Phys. Lett. A , 2009 , 373 , 1257–1260.
http://dx.doi.org/10.1016/j.physleta.2009.02.005

14. Cuevas , J. , English , L. Q. , Kevrekidis , P. G. , and Anderson , M. Discrete breathers in a forced-damped array of coupled pendula: modeling , computation , and experiment. Phys. Rev. Lett. , 2009 , 102 , 224101.
http://dx.doi.org/10.1103/PhysRevLett.102.224101

15. Gallavotti , G. (ed.). The Fermi-Pasta-Ulam Problem. Springer , Berlin , Heidelberg , 2008.
http://dx.doi.org/10.1007/978-3-540-72995-2

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December