headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Nonlinear energy in a wave turbulence system; pp. 430–437

(Full article in PDF format) doi: 10.3176/proc.2015.3S.14


Authors

Naoto Yokoyama, Masanori Takaoka

Abstract

Single-wavenumber representations of nonlinear energies are required to investigate energy budget due to nonlinear interactions among Fourier modes in wave turbulence. While we have reported in a previous paper that the single-wavenumber representations successfully works for the Föppl–von Kármán equation, we will show here that for the Majda–McLaughlin–Tabak model the single-wavenumber representations of nonlinear energies is not necessarily unique. Introducing auxiliary variables composed differently from complex amplitudes, two natural representations of the nonlinear energy are obtained. It is numerically observed that the two kinds of the nonlinear-energy spectra, based on these two representations, are qualitatively similar, but the energy budgets are clearly different. To select the appropriate single-wavenumber representation of the nonlinear energy, the properties which an eligible single-wavenumber representation should have are discussed.

Keywords

wave turbulence, nonlinear energy, energy budget.

References

  1. Zakharov , V. E. , L¢vov , V. S. , and Falkovich , G. Kolmogorov Spectra of Turbulence I: Wave Turbulence. Springer-Verlag , Berlin , 1992.
http://dx.doi.org/10.1007/978-3-642-50052-7

  2. Dias , F. , Guyenne , P. , and Zakharov , V. E. Kolmogorov spectra of weak turbulence in media with two types of interacting waves. Phys. Lett. A , 2001 , 291 , 139–145.
http://dx.doi.org/10.1016/S0375-9601(01)00711-3

  3. Miquel , B. , Alexakis , A. , and Mordant , N. Role of dissipation in flexural wave turbulence: from experimental spectrum to Kolmogorov–Zakharov spectrum. Phys. Rev. E , 2014 , 89 , 062925.
http://dx.doi.org/10.1103/PhysRevE.89.062925

  4. Rumpf , B. and Biven , L. Weak turbulence and collapses in the Majda–McLaughlin–Tabak equation: fluxes in wavenumber and in amplitude space. Physica D , 2005 , 204 , 188–203.
http://dx.doi.org/10.1016/j.physd.2005.04.012

  5. Yokoyama , N. and Takaoka , M. Single-wave-number representation of nonlinear energy spectrum in elastic-wave turbulence of the Föppl–von Kármán equation: energy decomposition analysis and energy budget. Phys. Rev. E , 2014 , 90 , 063004.
http://dx.doi.org/10.1103/PhysRevE.90.063004

  6. Majda , A. J. , McLaughlin , D. W. , and Tabak , E. G. A one dimensional model for dispersive wave turbulence. J. Nonlinear Sci. , 1997 , 7 , 9–44.
http://dx.doi.org/10.1007/BF02679124

  7. Cai , D. and McLaughlin , D. W. Chaotic and turbulent behavior of unstable one-dimensional nonlinear dispersive waves. J. Math. Phys. , 2000 , 41 , 4125–4153.
http://dx.doi.org/10.1063/1.533337

  8. Cai , D. , Majda , A. J. , McLaughlin , D. W. , and Tabak , E. G. Spectral bifurcations in dispersive wave turbulence. Proc. Natl. Acad. Sci. USA , 1999 , 96 , 14216–14221.
http://dx.doi.org/10.1073/pnas.96.25.14216

  9. Cai , D. , Majda , A. J. , McLaughlin , D. W. , and Tabak , E. G. Dispersive wave turbulence in one dimension. Physica D , 2001 , 152153 , 551–572.
http://dx.doi.org/10.1016/S0167-2789(01)00193-2

10. Zakharov , V. E. , Guyenne , P. , Pushkarev , A. N. , and Dias , F. Wave turbulence in one-dimensional models. Physica D , 2001 , 152153 , 573–619.
http://dx.doi.org/10.1016/S0167-2789(01)00194-4

11. Pushkarev , A. and Zakharov , V. E. Quasibreathers in the MMT model. Physica D , 2013 , 248 , 55–61.
http://dx.doi.org/10.1016/j.physd.2013.01.003

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December