headerpos: 12198
 
 
 

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952

Proceedings of the Estonian Academy of Sciences

ISSN 1736-7530 (electronic)   ISSN 1736-6046 (print)
Formerly: Proceedings of the Estonian Academy of Sciences, series Physics & Mathematics and  Chemistry
Published since 1952
Publisher
Journal Information
» Editorial Board
» Editorial Policy
» Archival Policy
» Article Publication Charges
» Copyright and Licensing Policy
Guidelines for Authors
» For Authors
» Instructions to Authors
» LaTex style files
Guidelines for Reviewers
» For Reviewers
» Review Form
Open Access
List of Issues
» 2019
» 2018
» 2017
» 2016
» 2015
Vol. 64, Issue 4S
Vol. 64, Issue 4
Vol. 64, Issue 3S
Vol. 64, Issue 3
Vol. 64, Issue 2
Vol. 64, Issue 1S
Vol. 64, Issue 1
» 2014
» 2013
» 2012
» 2011
» 2010
» 2009
» 2008
» Back Issues Phys. Math.
» Back Issues Chemistry
» Back issues (full texts)
  in Google. Phys. Math.
» Back issues (full texts)
  in Google. Chemistry
» Back issues (full texts)
  in Google Engineering
» Back issues (full texts)
  in Google Ecology
» Back issues in ETERA Füüsika, Matemaatika jt
Subscription Information
» Prices
Internet Links
Support & Contact
Publisher
» Staff
» Other journals

Wave nature in deformation of solids and comprehensive description of deformation dynamics; pp. 438–448

(Full article in PDF format) doi: 10.3176/proc.2015.3S.15


Authors

Sanichiro Yoshida

Abstract

Deformation of solids is discussed based on a recent field theory. Applying the basic physical principle, known as local symmetry, to the elastic force law, this theory derives field equations that govern dynamics of all stages of deformation on the same theoretical basis. The general solutions to the field equations are wave functions. Different stages of deformation are characterized by different restoring mechanisms that generate the wave characteristics. Elastic deformation is characterized by longitudinal restoring force, plastic deformation is characterized by transverse restoring force accompanied by longitudinal energy dissipative force. Fracture is characterized by the final stage of plastic deformation where the solid has lost both restoring and energy dissipative mechanisms. Experimental observations that support these wave dynamics are presented.

Keywords

deformation of solids, plastic deformation transverse-wave, elasto-plastic solitary-wave.

References

  1. Yoshida , S. Deformation and Fracture of Solid-State Materials. Springer , New York , Heidelberg , London , 2015.
http://dx.doi.org/10.1007/978-1-4939-2098-3

  2. Yoshida , S. Scale-independent approach to deformation and fracture of solid-state materials. J. Strain Anal. , 2011 , 46 , 380–388.
http://dx.doi.org/10.1177/0309324711404788

  3. Yoshida , S. Dynamics of plastic deformation based on restoring and energy dissipative mechanism in plasticity. Phys. Mesomech. , 2008 , 11(3–4) , 140–146.
http://dx.doi.org/10.1016/j.physme.2008.07.003

  4. Yoshida , S. , Widiastuti , R. , Pardede , M. , Hutagalung , S. , Marpaung , J. S. , Muhardy , A. F. , and Kusnowo , A. Direct observation of developed plastic deformation and its application to nondestructive testing. Jpn J. Appl. Phys. , 1996 , 35 , L854–L857.
http://dx.doi.org/10.1143/JJAP.35.L854

  5. Yoshida , S. and Toyooka , S. Field theoretical interpretation of dynamics of plastic deformation – Portevin-Le Chatelie effect and propagation of shear band. J. Phys. Condens. Matter , 2001 , 13(31) , 6741–6757.
http://dx.doi.org/10.1088/0953-8984/13/31/312

  6. Yoshida , S. , Ishii , H. , Ichinose , K. , Gomi , K. , and Taniuchi , K. An optical interferometric band of an indicator of plastic deformation front. J. Appl. Mech. , 2005 , 72(5) , 792–794.
http://dx.doi.org/10.1115/1.1985431

  7. Suzuki , T. , Takeuchi , S. , and Yoshinaga , H. Dislocation Dynamics and Plasticity. Springer , Berlin , New York , Tokyo , 1991.
http://dx.doi.org/10.1007/978-3-642-75774-7

  8. Yoshida , S. and Sasaki , T. Field theoretical description of shear bands. Soc. Exp. Mech. Annual Meeting , June 8–11 , 2015 , Costa Mesa , CA , USA.

  9. Yoshida , S. , Siahaan , B. , Pardede , M. H. , Sijabat , N. , Simangunsong , H. , Simbolon , T. , and Kusnowo , A. Observation of plastic deformation wave in a tensile-loaded aluminum-alloy. Phys. Lett. A , 1999 , 251(1) , 54–60.
http://dx.doi.org/10.1016/S0375-9601(98)00852-4

10. Maugin , G. A. Solitons in elastic solids (1938–2010). Mech. Res. Commun. , 2011 , 38(5) , 341–349.
http://dx.doi.org/10.1016/j.mechrescom.2011.04.009

11. Yoshida , S. Optical interferometric study on deformation and fracture based on physical mesomechanics. Phys. Mesomech. , 1999 , 2(4) , 5–12.

 
Back

Current Issue: Vol. 68, Issue 3, 2019




Publishing schedule:
No. 1: 20 March
No. 2: 20 June
No. 3: 20 September
No. 4: 20 December